一种轮毂驱动电动汽车底盘协调控制系统技术方案

技术编号:14639507 阅读:174 留言:0更新日期:2017-02-15 13:49
本发明专利技术公开一种轮毂驱动电动汽车底盘协调控制系统,该系统主要由信号处理层、顶层协调控制层、底层子系统控制层及执行层组成。信号处理层利用车辆参考模型获得多源输入下动力学响应的期望值,并将期望值与实际值的差值信号传递给顶层协调控制层;协调控制层根据信号处理层传递过来的信号及采集到的车辆动力学响应值对车辆运行状态进行判断,并根据制定的控制目标和控制策略对底层子系统控制层进行任务分配;各子系统控制器在接收到协调控制层的指令后,按各自的控制规则指令各自子系统执行层工作,实现车辆动力学的控制。该系统不仅可以避免车辆运行时各子系统各行其是而产生的控制干涉,且协调层和各子系统是相互独立的,具有较高的可靠性。

【技术实现步骤摘要】

本专利技术涉属于电动汽车底盘控制
,尤其涉及一类轮毂驱动系统电动汽车的耦合动力学控制系统。技术背景轮毂电机驱动电动汽车取消了传动轴、差速器等,将电机、减速机构等高度集成于车轮内。将电机等部件引入车轮内,不仅会造成非簧载质量的增加,同时,不平路面下的轮胎跳动、载荷不均等将使电机电磁场发生变化,从而产生新的机-电-磁多场耦合的动力学问题,这使得轮毂电机驱动车辆底盘系统的动力学控制问题面临不同于传统电动汽车的新的挑战。在轮毂电机驱动车辆动力学控制方面,国内外已经进行了一定卓有成效的研究工作。但纵观现有研究,多数学者车辆的各向动力学控制分开研究,但实际上车辆各向动力学特性存在严重的耦合关系的,且底盘各向动力学控制子系统繁多,易出现控制干涉问题;另一方面,车辆动力学模型的基本假设均是在平直路面上的理想情况,没有考虑路面激励的影响;轮毂电机直接安装于车轮内,不同路面激励下轮胎跳动、载荷不均等造成的电机结构场的变化将导致电磁场产生不平衡电磁力,并通过减速机构或直接传递给车轮和车身,对车辆的动力学特性产生一定影响,目前的车辆底盘集成控制研究中均未考虑此方面的影响。本专利技术提出了一种轮毂驱动电动汽车底盘协调控制系统,其通过顶层协调控制层的设置对轮毂驱动车辆现有的主动悬架、主动转向和直接横摆力矩系统进行协调控制,不仅可以避免车辆运行时各子系统“各行其是”而出现控制干涉问题,同时,顶层协调控制层和各子系统是相互独立的,在其顶层协调控制层出现故障时,主动悬架、主动转向和直接横摆力矩等子系统仍可以按各自的控制规则进行工作,因此,具有较高的可靠性。利用该系统可以达到较好的改善路面和电磁耦合激励下轮毂电机驱动车辆垂向和横向耦合动力学特性。
技术实现思路
本专利技术的目的在于针对现有技术存在的不足,提出了一种以改善轮毂电机驱动车辆垂向和横向耦合动力学特性为目标的底盘协调控制系统,其通过对主动悬架、主动转向和直接横摆力矩各子系统的协调控制,可以较好的解决路面激励、电磁激励和车辆转向输入下轮毂电机驱动车辆的垂向和横向耦合动力学控制问题。本专利技术的目的通过如下技术方案实现:本专利技术主要由信号处理层、顶层协调控制层、底层子系统控制层及执行层组成。信号处理层主要利用车辆参考模型计算出路面激励、电磁激励和转向盘转向同时作用下所期望的动力学响应值,并将得到的期望值与实时反馈的实际值进行比较,同时将期望值及其与实际值的差值信号传递给顶层协调控制层;顶层协调控制层则根据信号处理层传递过来的各输入信号和采集到的车辆动力学响应的实际值对车辆运行状态进行判断,进行综合控制目标的制定,并根据事先制定的协同控制策略对底层子系统控制器进行任务分配;各子系统控制器在接收到顶层协调控制层的指令后,按照各自的控制规则指令各自子系统执行层工作,实现对车辆耦合动力学的控制。本专利技术属于电动汽车底盘控制
,尤其涉及一类轮毂驱动电动汽车底盘协调控制系统。该系统可以解决同一车辆上多个子系统同时存在时,由于控制目标的不一致各系统会而产生相互干涉与冲突的问题,确保车辆各子系统之间协调工作,以达到改善车辆耦合动力学特性的目的。附图说明下面结合附图和实施实例对本专利技术做进一步说明。图1是本专利技术轮毂驱动电动汽车底盘协调控制系统的结构示意图。图2是本专利技术实施例中AFS控制器S31的控制结构示意图。图3是本专利技术实施例中AS控制器S32的控制结构示意图。图4是本专利技术实施例中DYC控制器S33的控制结构示意图。具体实施方式下面结合附图和实施例对本专利技术作进一步详细的说明,但本专利技术的实施方式不限于此。如图1底盘协调控制系统实施例的结构示意图所示,本专利技术提供的一种轮毂驱动电动汽车底盘协调控制系统,通过对轮毂驱动车辆底盘的主动悬架系统AFS、主动转向系统ASS和直接横摆力矩系统DYC进行协调控制,确保汽车各子系统之间协调工作,来改善路面激励、电磁激励及转向输入同时作用下车辆的垂向和横向耦合动力学特性。该系统主要包括:信号处理层S1、顶层协调控制层S2、子系统控制层S3、执行层S4。1、信号处理层S1包括:路面激励S11、电磁激励S12、转向输入S13和参考模型S14。信号处理层的作用是利用车辆参考模型S13计算出路面激励S11、电磁激励S12和转向输入S14同时作用下所期望的车辆动力学响应值,并将得到的期望值与实时反馈的实际值进行比较,同时将车辆动力学响应的期望值及其与实际值的差值信号传递给顶层协调控制层S2。路面激励S11是指能模拟路面不平度的时域或频域输入,或通过实验测试得到的路面平度输入数据;所述S12的电磁激励是指由于路面激励、载荷不均等引起的电机气隙变形而产生的不平衡电磁力,其根据轮毂电机的不同类型,有不同的数学表达式;所述转向输入S13可以是转向盘转角输入,也可以是车轮转向角输入,本实施例S13指的是车轮转向角输入。参考模型S14在本实施例中为线性二自由度动力学模型。2、顶层协调控制层S2则根据信号处理层S1传递过来的各输入信号和采集到的车辆动力学响应的实际值完成如下工作:车辆运行状态的判断S21,控制目标的制定S22,子系统任务的分配S23。(1)顶层协调控制层S2在制定协调控制策略时,首先要根据信号处理层S1传递过来的各输入信号和采集到的车辆动力学响应的实际值完成车辆运行状态的判断步骤S21,其对车辆状态的判断包括:A.直线行驶与转向行驶的识别通过设置转向控制阀值▽δ的方法区分直线和转向行驶状态。若转向角输入δ≤▽δ,则认为车辆为直线行驶状态;若转向角输入δ>▽δ,则认为车辆为转向状态。B.转向行驶稳态响应识别首先由所述S14线性二自由度车辆动力学模型,得到系统特征方程;然后,根据Huiwitz稳定性判断,可以得到系统稳定性的判断条件如下:其中u为车速,uch为车辆特征车速。由稳定性判断条件可知,要判断车辆是否稳定运行,必须求解出特征车速uch。特性车速可根据转向盘转角、车速和横摆角速度进行求解。假设车辆作稳态圆周运动,则满足:其中,β为质心侧偏角,γ为质心横摆角。则可推导出横摆角速度增益为:可推得,其中,ρ为转向半径,l为轴距。假设车辆符合阿克曼转向条件,则满足于是可以得到以下结论:a.为不足转向;b.为中性转向;c.为过多转向。(2)控制目标的设置顶层协调控制层S2在完成车辆运行状态的判断S21后,将根据所述S21的判断结果进行下一步的工作,即:控制目标的设置S22。所述S22要根据应用对象的性能要求所指定的,应用对象的性能要求不同,制定的控制目标函数会有所不同,应用对象的性能要求相同,也可以有不同的表达函数。本实施例中应用对象的协调控制主要是针对车辆的垂向和侧向耦合动力学行为进行的。综合垂向和侧向动力学特性的评价指标,选取车辆的垂向加速度、俯仰角、侧向加速度、横摆角速度和侧倾角作为协调控制指标,将其控制目标函数:σa(γ)、σa(ay)、σa(φ)、σa(θ)分别为控制时横摆角速度、侧向加速度、垂向加速度、侧倾角、俯仰角的均方根值,σp(γ)、σp(ay)、σp(φ)、σp(θ)分别为无控制时相应性能的均方根值。(3)子系统任务的分配S23在完成车辆运行状态的判断S21和控制目标的制定S22后,协调控制系统S2即可根据一定的控制规则进行子系统任务的分配S23。所述控制规则本文档来自技高网
...
一种轮毂驱动电动汽车底盘协调控制系统

【技术保护点】
本专利技术公开一种轮毂驱动电动汽车底盘协调控制系统,该系统主要由信号处理层S1、顶层协调控制层S2、子系统控制层S3和执行层S4组成。其特征在于:(1)所述信号处理层S1包括:路面激励S11、电磁激励S12、转向输入S13和参考模型S14。所述信号处理层的作用是利用车辆参考模型S14计算出路面激励S11、电磁激励S12和转向输入S13同时作用下所期望的车辆动力学响应值,并将得到的期望值与实时反馈的实际值进行比较,同时将车辆动力学响应的期望值及其与实际值的差值信号传递给顶层协调控制层S2。(2)所述顶层协调控制层S2则根据信号处理层S1传递过来的各输入信号和采集到的车辆动力学响应的实际值完成如下工作:车辆运行状态的判断S21,控制目标的制定S22,子系统任务的分配S23。所述车辆运行状态的判断S21包括:直线行驶与转向行驶的识别和转向行驶稳态响应类型的识别。所述控制目标的制定S22是指能反映车辆垂向和横向耦合动力学特性的目标函数表达式。所述子系统任务的分配S23是指在完成车辆运行状态的判断S21和控制目标的制定S22后,协调控制系统S2即可根据一定的协调控制规则进行子系统任务的分配S23。(3)所述子系统控制层S3包括:AFS控制器S31、AS控制器S32和DYC控制器S33。各子系统控制器在接收到顶层协调控制层S2的指令后,按照各自的控制规则指令各自子系统执行层工作,实现对车辆耦合动力学的控制。(4)所述执行层S4包括:AFS执行结构S41、AS执行结构S42和DYC执行结构S43和车辆耦合动力学模型S44。所述子系统控制层S3中各子系统控制器发出的控制指令通过各子系统执行结构直接作用于车辆的耦合动力学模型S44,达到控制车辆耦合动力学的目的。...

【技术特征摘要】
1.本发明公开一种轮毂驱动电动汽车底盘协调控制系统,该系统主要由信号处理层S1、顶层协调控制层S2、子系统控制层S3和执行层S4组成。其特征在于:(1)所述信号处理层S1包括:路面激励S11、电磁激励S12、转向输入S13和参考模型S14。所述信号处理层的作用是利用车辆参考模型S14计算出路面激励S11、电磁激励S12和转向输入S13同时作用下所期望的车辆动力学响应值,并将得到的期望值与实时反馈的实际值进行比较,同时将车辆动力学响应的期望值及其与实际值的差值信号传递给顶层协调控制层S2。(2)所述顶层协调控制层S2则根据信号处理层S1传递过来的各输入信号和采集到的车辆动力学响应的实际值完成如下工作:车辆运行状态的判断S21,控制目标的制定S22,子系统任务的分配S23。所述车辆运行状态的判断S21包括:直线行驶与转向行驶的识别和转向行驶稳态响应类型的识别。所述控制目标的制定S22是指能反映车辆垂向和横向耦合动力学特性的目标函数表达式。所述子系统任务的分配S23是指在完成车辆运行状态的判断S21和控制目标的制定S22后,协调控制系统S2即可根据一定的协调控制规则进行子系统任务的分配S23。(3)所述子系统控制层S3包括:AFS控制器S31、AS控制器S32和DYC控制器S33。各子系统控制器在接收到顶层协调控制层S2的指令后,按照各自的控制规则指令各自子系统执行层工作,实现对车辆耦合动力学的控制。(4)所述执行层S4包括:AFS执行结构S41、AS执行结构S42和DYC执行结构S43和车辆耦合动力学模型S44。所述子系统控制层S3中各子系统控制器发出的控制指令通过各子系统执行结构直接作用于车辆的耦合动力学模型S44,达到控制车辆耦合动力学的目的。2.根据权利要求1,所述轮毂驱动电动汽车底盘协调控制系统,其特性在于,所述顶层协调控制层S2和子系统控制层S3是相互独立的,当顶层协调控制层S2产生故障或失效时,所述各子系统仍能按各自的控制规则进行工作。3.根据权利要求1,所述轮毂驱动电动汽车底盘协调控制系统,其特性在于,所述路面激励S11是指路面不平度激励,其可以是路面不平度位移激励、路面不平度速度激励或路面不平度加速度激励,其可以由路面不平度的时域表达式或频域表达式计算得到,也可由试验测试得到;所述电磁激励S12可根据具体应用对象所采用的轮毂电机的类型的相关计算公式计算得到,也可由试验测试得到。所述轮毂电机的类型可以是各种直流电机、异步电机、同步电机及其他类型电机。4.根据权利要求1,所述轮毂驱动电动汽车底盘协调控制系统,其特性在于,所述车辆运行状态的判断S21中直线行驶与转向行驶的识别是通过设置控制阀值的方法对进行车辆转向状态识别;若转向角输入则认为车辆为直线行驶状态;若转向角输入则认为车辆为转向状态。5.根据权利要求1,所述轮毂驱动电动汽车底盘协调控制系统,其特性在于,所述车辆运行状态的判断S21中转向行驶稳态响应类型的识别是利用特征车速对车辆稳态响应类型进行判断。首先由所述S14线性二自由度车辆动力学模型,得到系统特征方程;然后,根据Huiwitz稳定性判断,可以得到系统稳定性的判断条件如下:其中u为车速,uch为车辆特征车速。由稳定性判断条件可知,要判断车辆是否稳定运行,必须求解出特征车速uch。特性车速可根据转向盘转角、车速和横摆角速度进行求解。假设车辆作稳态圆周运动,则满足:δ=constγ·=constβ·=0u·=0]]>其中,β为质心侧偏角,γ为质心横摆角。则可推导出横摆角速度增益为:γ·(t)δ(t)=1lu(t)1+u2(t)/uch2(t)]]>可推得,uch2(t)=u2(t)1-δ(t)u(t)/γ·(t)lδ=lρ+1uch2u2ρ]]>其中,ρ为转向半径,l为轴距。假设车辆符合阿克曼转向条件,则满足δ0=lρδ&...

【专利技术属性】
技术研发人员:谭迪鲁超
申请(专利权)人:山东理工大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1