三维存储器及其制造方法技术

技术编号:10671027 阅读:77 留言:0更新日期:2014-11-20 15:41
一种三维存储器制造方法,包括步骤:在衬底上形成第一材料层与第二材料层的堆叠结构;刻蚀堆叠结构露出衬底,形成垂直的多个第一开孔;在每个第一开孔中形成填充层;在每个第一开孔周围,刻蚀堆叠结构露出衬底,形成垂直的多个第二开孔;在每个第二开孔中形成垂直的沟道层和漏极;选择性刻蚀去除填充层,重新露出第一开孔;侧向刻蚀部分或者完全去除第二材料层,留下凹槽;在凹槽中形成栅极堆叠结构;在每个第一开孔底部的衬底上和/或中形成共源极。依照本发明专利技术的三维存储器制造方法,将TCAT三维器件的字线深槽替换为深孔刻蚀来完成相同的功能,提高集成密度,简化堆叠结构的刻蚀工艺,保留了金属栅控制性能。

【技术实现步骤摘要】
三维存储器及其制造方法
本专利技术涉及一种半导体器件及其制造方法,特别是涉及一种高密度三维存储器及其制造方法。
技术介绍
为了改善存储器件的密度,业界已经广泛致力于研发减小二维布置的存储器单元的尺寸的方法。随着二维(2D)存储器件的存储器单元尺寸持续缩减,信号冲突和干扰会显著增大,以至于难以执行多电平单元(MLC)操作。为了克服2D存储器件的限制,业界已经研发了具有三维(3D)结构的存储器件,通过将存储器单元三维地布置在衬底之上来提高集成密度。业界目前一种常用的3D存储器件结构是太比特单元阵列晶体管(TCAT)。具体地,可以首先在衬底上沉积多层叠层结构(例如氧化物和氮化物交替的多个ONO结构);通过各向异性的刻蚀工艺对衬底上多层叠层结构刻蚀而形成沿着存储器单元字线(WL)延伸方向分布、垂直于衬底表面的多个沟道通孔(可直达衬底表面或者具有一定过刻蚀);在沟道通孔中沉积多晶硅等材料形成柱状沟道;沿着WL方向刻蚀多层叠层结构形成直达衬底的沟槽,露出包围在柱状沟道周围的多层叠层;针对叠层中相邻层之间的刻蚀选择性,选择刻蚀选择比较高的腐蚀液湿法去除叠层中的第二类型材料,在柱状沟道周围留下横向分布的第一类型材料构成的突起结构;在沟槽中突起结构的侧壁沉积高k介质材料的栅极介质层以及金属材质的栅极导电层构成的栅极堆叠;刻蚀叠层结构形成源漏接触并完成后端制造工艺。此时,叠层结构在柱状沟道侧壁留下的一部分突起形成了栅电极之间的隔离层,而留下的栅极堆叠夹设在多个隔离层之间作为控制电极。当向栅极施加电压时,栅极的边缘电场会使得例如多晶硅材料的柱状沟道侧壁上感应形成源漏区,由此构成多个串并联的闪存单元构成的门阵列而记录所存储的逻辑状态。其中,为了将单元区多个串并联MOSFET信号引出,在柱状沟道顶部沉积填充多晶硅材料形成漏区,并形成与漏区电连接的金属接触塞以进一步电连接至上方的位线(bit-line,BL)。此外,在多个垂直柱状沟道之间衬底中形成带有金属硅化物接触的共用源区。在单元导通状态下,电流从共用源区流向周围的垂直沟道区,并在控制栅极(与字线WL相连)施加的控制电压作用下向上穿过垂直沟道中感应生成的多个源漏区,通过沟道顶部的漏区而进一步流向上方的位线。该TCAT器件结构具有体擦除(改变控制栅极可以引起感应源漏区以及浮栅极中电势变化,能整体擦除)、金属栅极(能较方便通过控制金属材料控制功函数从而调节晶体管阈值)等诸多优点。但是另一方面,由于除了顶部的选择晶体管(USG,位于存储晶体管单元串上方)之外,其余栅极与字线(WL)连接都是通过刻蚀孔进行共享链接,并且采用后栅工艺刻蚀去除伪栅极形成栅极开口并沉积金属栅极,这种极高深宽比(AR例如通常大于40:1乃至100:1)的深接触孔以及栅极开口将由于沉积多层薄膜而使得宽度增大,进而使得TCAT的存储单元密度无法有效进一步减小。同时,深槽的刻蚀和深孔沟道的刻蚀都是对多层堆栈的刻蚀,工艺复杂度很高,深孔和深槽的形状差异使得刻蚀的工艺也要有所变化。与TCAT技术对应的,另一种常用的器件结构例如是采用位成本可缩减(BiCS)的NAND结构,通过将存储器单元三维地布置在衬底之上来提高集成密度、其中沟道层垂直竖立在衬底上,栅极分为下层的选择栅极、中层的控制栅极以及上层的选择栅极三部分,通过将栅极信号分布在三组栅电极中以减小信号之间的串扰。具体地,上层和下层的器件用作选择晶体管——栅极高度/厚度较大的垂直MOSFET,栅极介质层为常规的单层高k材料;中层的器件用作存储单元串,栅极高度/厚度较小,栅极介质层为隧穿层、存储层、阻挡层的堆叠结构。基于BiCS的NAND结构器件的具体制造工艺一般包括,在硅衬底上沉积下层选择栅电极层,刻蚀下层选择栅电极层形成直达衬底的孔槽以沉积沟道层的下部分以及下层栅电极的引出接触,在上方沉积控制栅极层,刻蚀控制栅极层形成作为存储器单元区域的中间沟道区以及中层控制栅电极的引出接触,刻蚀形成控制栅极,按照字线、位线划分需要将整个器件分割为多个区域,在之上沉积上层选择栅极并刻蚀、沉积形成上部沟道以及上层引出接触,之后采用后续工艺完成器件的制造。在BiCS结构中,除了最上方的选择晶体管USG之外,下方的所有栅电极都可以是平板状,相对于TCAT而言可以避免深沟槽、深孔接触工艺,有利于提高存储器密度。在这种工艺过程中,最为关键的刻蚀步骤仅在于对于中间层存储器沟道区和引出接触的光刻,这直接决定了整个器件的集成度以及信号抗干扰能力。然而,BiCS结构虽然通过存储阵列与选择晶体管堆叠放置而分别利用控制栅极阈值,并且通过分层连接栅极避免了过大深宽比的接触孔或栅极开口的复杂工艺,但是只能通过多晶硅材质的栅极诱导漏极泄漏电流(GIDL)进行擦除,无法进行体擦除,读写效率较低。
技术实现思路
由上所述,本专利技术的目的在于克服上述技术困难,一种能以较低成本实现接触互连并且保持金属栅控制性能的新型三维存储器结构的制造方法。为此,本专利技术一方面提供了一种三维存储器制造方法,包括步骤:在衬底上形成第一材料层与第二材料层的堆叠结构;刻蚀堆叠结构露出衬底,形成垂直的多个第一开孔;在每个第一开孔中形成填充层;在每个第一开孔周围,刻蚀堆叠结构露出衬底,形成垂直的多个第二开孔;在每个第二开孔中形成垂直的沟道层和漏极;选择性刻蚀去除填充层,重新露出第一开孔;侧向刻蚀部分或者完全去除第二材料层,留下凹槽;在凹槽中形成栅极堆叠结构;在每个第一开孔底部的衬底上和/或中形成共源极。其中,第一材料层、第二材料层、填充层三者之间具有各自不同的刻蚀选择性。其中,第一材料层、第二材料层、填充层材料选自氧化硅、氮化硅、氮氧化硅、非晶硅、非晶锗、DLC、非晶碳的任意一种及其组合。其中,第一开孔的尺寸大于或等于第二开孔的尺寸。其中,沟道层为中心包括绝缘体的中空结构。其中,形成共源极之后进一步包括,在每个第一开孔侧壁形成绝缘层,在绝缘层侧壁以及每个第一开孔底部形成接触共源区的接触层。其中,形成接触层之时或者之后进一步包括,控制沉积工艺参数或者回刻使得接触层的顶面低于栅极堆叠结构最顶层的底面,并且采用绝缘层回填。其中,形成接触层之后进一步包括,刻蚀去除部分第一材料层、栅极堆叠结构形成第三开孔,在第三开孔中沉积绝缘材料形成与栅极堆叠结构最顶层之间的隔离绝缘区。其中,形成隔离绝缘区之后进一步包括,在器件上形成层间介质层,刻蚀层间介质层形成第四开孔直至露出接触层,填充金属形成共源线引线。其中,形成共源线接触塞之后进一步包括,在器件上形成第二层间介质层,刻蚀第二层间介质层形成第五开孔直至暴露沟道区,填充金属形成位线接触。其中,刻蚀形成第一开孔之前进一步包括,在阵列区域周围的字线接触区域刻蚀堆叠结构形成台阶,依次暴露每个第一材料层和第二材料层的端部。本专利技术另一方面提供了一种三维存储器制造方法,包括步骤:在衬底上形成第一材料层与第二材料层的堆叠结构;刻蚀堆叠结构露出衬底,同时形成垂直的多个第一开孔以及在每个第一开孔周围的多个第二开孔;在每个第一开孔中形成填充层;在每个第二开孔中形成垂直的沟道层和漏极;选择性刻蚀去除填充层,重新露出第一开孔;侧向刻蚀部分或者完全去除第二材料层,留下凹槽;在凹槽中形成栅极堆叠结构;在每个第一开孔底部的衬底上和/或中形成本文档来自技高网
...
三维存储器及其制造方法

【技术保护点】
一种三维存储器制造方法,包括步骤:在衬底上形成第一材料层与第二材料层的堆叠结构;刻蚀堆叠结构露出衬底,形成垂直的多个第一开孔;在每个第一开孔中形成填充层;在每个第一开孔周围,刻蚀堆叠结构露出衬底,形成垂直的多个第二开孔;在每个第二开孔中形成垂直的沟道层和漏极;选择性刻蚀去除填充层,重新露出第一开孔;侧向刻蚀部分或者完全去除第二材料层,留下凹槽;在凹槽中形成栅极堆叠结构;在每个第一开孔底部的衬底上和/或中形成共源极。

【技术特征摘要】
1.一种三维存储器制造方法,包括步骤:在衬底上形成第一材料层与第二材料层的堆叠结构;刻蚀堆叠结构露出衬底,形成垂直的多个第一开孔;在每个第一开孔中形成填充层;在每个第一开孔周围,刻蚀堆叠结构露出衬底,形成垂直的多个第二开孔;在每个第二开孔中形成垂直的沟道层和漏极;选择性刻蚀去除填充层,重新露出第一开孔;侧向刻蚀部分或者完全去除第二材料层,留下凹槽;在凹槽中形成栅极堆叠结构;在每个第一开孔底部的衬底上和/或中形成共源极。2.如权利要求1所述的三维存储器制造方法,其中,第一材料层、第二材料层、填充层三者之间具有各自不同的刻蚀选择性。3.如权利要求2所述的三维存储器制造方法,其中,第一材料层、第二材料层、填充层材料选自氧化硅、氮化硅、氮氧化硅、非晶硅、非晶锗、DLC、非晶碳的任意一种及其组合。4.如权利要求1所述的三维存储器制造方法,其中,第一开孔的尺寸大于或等于第二开孔的尺寸。5.如权利要求1所述的三维存储器制造方法,其中,沟道层为中心包括绝缘体的中空结构。6.如权利要求1所述的三维存储器制造方法,其中,形成共源极之后进一步包括,在每个第一开孔侧壁形成绝缘层,在绝缘层侧壁以及每个第一开孔底部形成接触共源区的接触层。7.如权利要求6所述的三维存储器制造方法,其中,形成接触层之时或者之后进一步包括,控制沉积工艺参数或者回刻使得接触层的顶面低于...

【专利技术属性】
技术研发人员:霍宗亮刘明靳磊
申请(专利权)人:中国科学院微电子研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1