包括富硅氮化硅隔离介质层的3D NAND导线孔的制备方法技术

技术编号:17881649 阅读:71 留言:0更新日期:2018-05-06 02:45
提供了一种3D NAND导线孔的制备方法,该导线孔形成在串选择区,且该导线孔中填充了钨金属以实现导线连接,在预清洁步骤之前在该导线孔中沉积一富硅氮化硅层以作为隔离介质层。上述制备方法中,利用富硅氮化硅层沉积工艺代替了传统的氮化硅沉积,从而减轻了由于NH3的分解或反应所导致的导线孔中隔离介质层上下不均匀的问题,由此避免了由于隔离介质层分布不均所导致的刻蚀问题,提高了工艺的稳定性和可靠性。

Preparation method of 3D NAND conductor holes including silicon rich silicon nitride isolation dielectric layer

A method for the preparation of a 3D NAND wire hole is provided, which is formed in the string selection area, and the wire hole is filled with tungsten metal to realize the wire connection. A silicon rich silicon nitride layer is deposited in the hole before the pre cleaning step as an isolating medium layer. In the above preparation method, the silicon nitride layer deposition process is used instead of the traditional silicon nitride deposition, thus reducing the problem of uneven dielectric layer on the wire hole due to the decomposition or reaction of NH3, thus avoiding the etching problem caused by the uneven distribution of the dielectric layer, and improving the process. Stability and reliability.

【技术实现步骤摘要】
包括富硅氮化硅隔离介质层的3DNAND导线孔的制备方法
本申请涉及三维(3D)存储器
,更为具体的说,涉及一种包括富硅氮化硅隔离介质层的3DNAND导线孔的制备方法。
技术介绍
随着闪存的快速发展,3D闪存结构得到了迅速发展,而NAND型闪存是一种比硬盘驱动器更好的存储设备,随着人们追求功耗低、质量轻和性能佳的非易失存储产品,3DNAND闪存更是在电子产品中得到了广泛的应用。在3DNAND结构中,在目前工艺中,在SS(串选择)区中通过多次刻蚀形成多个导线孔,并经过化学气相沉积(CVD)方法在所述导线孔内填充金属钨,从而实现导线连接,图1(a)和1(b)分别是SS区中导线孔和钨导线的示意图,其中示出了SS区在3DNAND中所处的位置。如图1(a)所示在SS区中通过多次刻蚀形成多个导线孔101;然后如图1(b)所示向上述导线孔101中填充CVD钨金属,从而形成了钨导电插塞结构108。现有技术中,在没有侧壁隔离层的导线孔中形成金属钨插塞时,采用如下工艺流程:首先在SS区通过多次刻蚀形成多个导线孔开口;在每次刻蚀步骤之后均通过预清洁工艺对导线孔开口进行清洁处理;最后在导线孔中填充钨沉积层从而形成金属钨插塞。在上述工艺中,在每次刻蚀之后均会进行酸洗从而进行预清洁处理,在该步骤中由于没有隔离介质层进行保护因此酸洗会腐蚀导线孔从而导致导线孔尺寸变大,并会使得侧壁的二氧化硅和底部的金属钨导线产生损伤,图2(a)就示出了导线孔在没有隔离介质层保护的情况下,经由酸洗而产生的导线孔尺寸变大问题,图2(b)则示出了酸洗对导线孔的侧壁产生的损伤,图2(c)示出了在具有上述问题的导线孔的底部所产生的钨损伤问题。因此为了避免上述问题,在现有技术中通常在预清洁之前会在导线孔中生长一氮化硅保护层,由此便使得制备所得到的导线孔中具有氮化硅侧壁隔离层。现有技术中针对具有上述氮化硅侧壁隔离层的导线孔,采用图3(a)-3(d)所示的如下工艺流程形成金属钨插塞:首先如图3(a)所示在SS区通过多次刻蚀形成多个导线孔开口201;然后如图3(b)所示在每次刻蚀步骤之后均在此次刻蚀所得到的导线孔开口201中制备一SiN层202,然后通过预清洁工艺对导线孔开口及其上述SiN层进行清洁处理;接着如图3(c)所示刻蚀去除导线孔底部的SiN层,从而形成了位于导线孔侧壁的氮化硅侧壁203;最后如图3(d)所示在导线孔中填充钨沉积层从而形成金属钨插塞结构208。上述氮化硅层能够在酸洗中保护导线孔侧壁的硅和底层的钨金属,并能防止因酸洗腐蚀而导致的导线孔扩大,但按照传统工艺生长氮化硅时一般采用NH3气体,而由于重金属对NH3分解有催化作用,并且可能存在重金属W与NH3之间的反应,因此会使得所形成的SiN层的台阶覆盖性较差,并会对导线电阻产生影响。这会造成导线孔中上下部氮化硅层存在厚度不均匀的问题,具体如图4所示,图4(a)-4(c)分别为导线孔上部、中部和底部的SiN层测绘图,如图可见,导线孔愈往下所形成SiN层厚度愈厚,而该SiN层在导线孔底部的厚度接近顶部厚度的两倍。SiN层的上述厚度分布给后续的导线孔底部SiN刻蚀带来一定的影响,从而使得该SiN层刻蚀需要更多的能量或者时间,并且由于SiN硬度较大,在步骤3(c)中打开底部已经沉积的SiN所需要的刻蚀能量较大,从而会导致使得过量刻蚀出现的概率增大,以致于导致底部的金属W损伤,从而给工艺的稳定性和可靠性带来一定的困难。根据图5所示的底部刻蚀之后能谱仪(EDS)测绘图可见,现有技术所制备的SiN层在底部刻蚀之后会具有明显的氮残留。而图6则示出了过量刻蚀后的导线孔,如图6虚线框中所示出的导线孔,由于过量刻蚀因而会导致导线连接存在错误从而影响器件的电性能。
技术实现思路
为了解决上述问题,本专利技术提供了一种包括富硅氮化硅隔离介质层的3DNAND导线孔,通过采用富硅氮化硅工艺代替上述传统氮化硅生长工艺,即能够有效地保护沟槽,又不会带来负面的影响。本专利技术的目的是通过以下技术方案实现的:提供了一种3DNAND导线孔的制备方法,包括如下步骤:S1:在串选择区形成导线孔;S2:在该导线孔中实施一富硅氮化硅沉积工艺以沉积一富硅氮化硅层来作为隔离介质层;S3:对所述导线孔实施预清洁处理;S4:去除导线孔底部的富硅氮化硅层;S5:向导线孔中填充钨金属以实现导线连接。进一步地,该方法中所述富硅氮化硅沉积工艺具体包括:利用NH3和SiH2Cl2混合气体或者利用NH3和SiH4混合气体制备所述富硅氮化硅层,其中所述NH3的流量为30-100sccm,而所述SiH2Cl2或SiH4的流量为100-700sccm。进一步地,在该方法中所述富硅氮化硅层的沉积温度为600-800℃。进一步地,在该方法中上述预清洁步骤包括酸洗处理。此外还提供了一种3DNAND导线孔,该导线孔中的隔离介质层为一富硅氮化硅层,所述导线孔利用前述的方法制备。本专利技术的优点在于:利用富硅氮化硅工艺代替了传统的氮化硅沉积工艺,从而在3DNAND导线孔中利用该富硅氮化硅工艺沉积的富硅氮化硅层作为隔离介质层,从而能够使得NH3的分解或反应所导致的导线孔中隔离介质层上下不均匀的问题能够得以解决,由此避免了由于隔离介质层分布不均所导致的问题,提高了工艺的稳定性和可靠性。附图说明通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本专利技术的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:附图1(a)和1(b)分别是SS区中导线孔和钨导线的示意图;附图2(a)-2(c)是没有隔离介质层保护的导线孔在经由酸洗之后分别产生的导线孔尺寸扩大、侧壁损伤和底部钨金属损伤问题;附图3(a)-3(d)是在具有氮化硅侧壁的导线孔中制备金属钨导线的各工艺步骤的结构示图;附图4(a)-4(c)分别为采用现有工艺制备氮化硅层之后在导线孔上部、中部和底部的SiN层测绘图;附图5是针对图3所示的氮化硅层进行底部刻蚀之后的能谱仪测绘图;附图6是采用了图3所示的氮化硅层的3DNAND导线孔中存在的过量刻蚀缺陷图示;附图7(a)-7(e)是根据本专利技术实施方式在具有富硅氮化硅侧壁的导线孔中制备金属钨导线的各工艺步骤的结构示图;附图8是根据本实施方式制备富硅氮化硅层的设备图。具体实施方式下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。本专利技术中SS区金属钨插塞的工艺流程与前述的图3(a)-3(d)所示的现有技术工艺流程类似,不同的是利用富硅氮化硅层代替前述的氮化硅层,具体工艺流程如图7(a)-7(e)所示包括如下步骤:首先如图7(a)所示在SS区通过刻蚀形成多个导线孔开口301;然后如图7(b)所示在刻蚀形成上述导线孔开口301中制备一富硅氮化硅层302;然后如图7(c)所示实施预清洁处理,该预清洁处理采用酸洗工艺,前述的富硅氮化硅层302在该酸洗步骤中,能够有效地起到保护作用,从而避免导线孔扩本文档来自技高网
...
<a href="http://www.xjishu.com/zhuanli/59/201711182647.html" title="包括富硅氮化硅隔离介质层的3D NAND导线孔的制备方法原文来自X技术">包括富硅氮化硅隔离介质层的3D NAND导线孔的制备方法</a>

【技术保护点】
一种3D NAND导线孔的制备方法,包括如下步骤:S1:在串选择区形成导线孔;S2:在该导线孔中实施一富硅氮化硅沉积工艺以沉积一富硅氮化硅层;S3:对所述导线孔实施预清洁处理;S4:去除导线孔底部的所述富硅氮化硅层;S5:向导线孔中填充钨金属以实现导线连接。

【技术特征摘要】
1.一种3DNAND导线孔的制备方法,包括如下步骤:S1:在串选择区形成导线孔;S2:在该导线孔中实施一富硅氮化硅沉积工艺以沉积一富硅氮化硅层;S3:对所述导线孔实施预清洁处理;S4:去除导线孔底部的所述富硅氮化硅层;S5:向导线孔中填充钨金属以实现导线连接。2.根据权利要求1所述的制备方法,其特征在于,所述富硅氮化硅沉积工艺具体包括:利用NH3和SiH2Cl2混合气体或者利用NH3和SiH4混合气体制备所述富...

【专利技术属性】
技术研发人员:郭帅吴俊王家友朱峰李春龙
申请(专利权)人:长江存储科技有限责任公司
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1