一种催化裂化助剂及其制备方法与应用技术

技术编号:11424122 阅读:88 留言:0更新日期:2015-05-07 02:47
本发明专利技术公开了一种催化裂化助剂及其制备方法与应用。该催化裂化助剂的制备方法包括使用活性中孔材料、金属捕集剂、以及粘土和/或耐热无机氧化物源,得到催化裂化助剂,其中,所述活性中孔材料由包括以下步骤的方法制得:将铝源与碱溶液中和成胶陈化;将过滤所得固体沉淀物与铵盐或酸溶液接触处理一定时间,过滤得到低钠固体沉淀物;将得到的低钠沉淀物与磷源接触处理,烘干焙烧后得到具有拟薄水铝石物相结构的活性中孔材料,其无水化合物组成以氧化物重量比计为(0-0.2)Na2O·(50-86)Al2O3·(12-50)SiO2·(0.5-10)P2O5。本发明专利技术的催化裂化助剂用于重油催化裂化时,具有较强的重油裂化能力、更高的轻质油产率及更好的焦炭选择性。

【技术实现步骤摘要】
一种催化裂化助剂及其制备方法与应用
本专利技术涉及一种催化裂化助剂及其制备方法与应用。具体地,涉及一种含有活性中孔材料的催化裂化助剂的制备方法,以及由此方法制得的催化裂助剂,和该催化裂化助剂在重油催化裂化中的应用。
技术介绍
原油价格的不断攀升大幅度增加了炼厂的加工成本,炼厂一方面通过购进低价的劣质油来降低成本;另一方面通过深度加工重质油来增加经济收益。催化裂化作为炼厂重油加工的重要手段,在炼厂有着举足轻重的地位,其不仅是炼油厂重油平衡、生产清洁燃料的主要手段,更是炼油厂的节能增效的关注点。因此越来越多的炼厂已经把关注点转向重质油的深度转化,追求提高加工能力,多出高附加值产品,以期效益最大化。这就意味着要尽可能地将重质原油转化,降低塔底油产量。其次在尽量将重质油转化的同时,要更为关注干气及焦炭的产量,这些产品不仅价值低,而且其产量往往受装置状况的限制。实现上述目标均要求催化剂有较高的重油转化能力,目前一般通过加入重油催化裂化助剂来增强主催化剂的重油转化能力。EP0550271A1,US5051385A,US5997729A公开的催化剂是在铝基催化剂的制备过程中加入含硅的材料,如水玻璃,生成无定型大孔硅酸铝作为助剂的基质材料,与沸石类活性组元共同作用促进重油大分子的转化。除此之外,还有一类不含Y型沸石的重油转化助剂,例如WO9712011A1公开了一种塔底油裂化助剂,具体涉及到两种配方。配方一:含有以下组分①5-30重%的硅铝酸盐化合物;②15-30重%的可胶溶氧化铝;③5-25重%的非胶溶氧化铝;④30-60重%的粘土;⑤还可以含有小于2重%的金属捕集剂。配方二:与配方一不同的是③替换为含P的化合物,改善助剂的抗磨损性能。其中①提到的硅铝酸盐化合物最佳的制备方法见US5045519A,该专利采用醇基铝盐为原料,价格昂贵,大大提高了助剂的成本。由此可见,现有技术正在尝试各种能够改进助剂的助催化性能的方法,尽管已经取得了一定成果,在一定程度上促进了重质油的裂化,但是现有的制备催化裂化助剂的方法仍然存在成本高及重油转化能力有待提高等问题。
技术实现思路
本专利技术的目的是为了克服现有技术催化裂化助剂存在成本高及重油转化能力有待提高的缺陷,提供了一种重油转化能力强、轻油收率高的催化裂化助剂及其制备方法。本专利技术提供一种催化裂化助剂的制备方法,该方法包括以下步骤:(1)将铝源与碱溶液中和成胶后,加入硅源陈化,得到固体沉淀物,其中所述铝源、碱溶液和硅源中至少有一种为含钠原料;将所得固体沉淀物与铵盐或无机酸混合,过滤得到氧化钠含量为0.3重量%以下的低钠固体沉淀物;将所得低钠固体沉淀物与磷源接触并干燥和焙烧后得到活性中孔材料;(2)将所述活性中孔材料、金属捕集剂、粘土和/或耐热无机氧化物源与水混合打浆,然后进行喷雾干燥、焙烧、洗涤和干燥;其中,以P2O5计的所述磷源与以干基计的所述低钠固体沉淀物的重量比为0.01-0.1:1。本专利技术提供了由本专利技术提供的制备方法制得的催化裂化助剂。本专利技术提供了由本专利技术提供的催化裂化助剂在重油催化裂化中的应用。通过本专利技术提供的催化裂化助剂的制备方法,制备含有活性中孔材料的催化裂助剂,其中活性中孔材料含磷、低钠具有拟薄水铝石结构,将该催化裂化助剂用于重油催化裂化时,具有较强的重油裂化能力、更高的轻质油产率及更好的焦炭选择性。附图说明图1为活性中孔材料AMM-1的XRD谱图;图2为DB-2的XRD谱图。具体实施方式以下对本专利技术的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本专利技术,并不用于限制本专利技术。本专利技术提供一种催化裂化助剂的制备方法,该方法包括以下步骤:(1)将铝源与碱溶液中和成胶后,加入硅源陈化,得到固体沉淀物,其中所述铝源、碱溶液和硅源中至少有一种为含钠原料;将所得固体沉淀物与铵盐或无机酸混合,过滤得到氧化钠含量为0.3重量%以下的低钠固体沉淀物;将所得低钠固体沉淀物与磷源接触并干燥和焙烧后得到活性中孔材料;(2)将所述活性中孔材料、金属捕集剂、粘土和/或耐热无机氧化物源与水混合打浆,然后进行喷雾干燥、焙烧、洗涤和干燥;其中,以P2O5计的所述磷源与以干基计的所述低钠固体沉淀物的重量比为0.01-0.1:1。根据本专利技术,提供的催化裂化助剂的制备方法中先制备得到活性中孔材料,再制备加入了所述活性中孔材料的催化裂化助剂。在本专利技术中,以干基计的重量是指在约800℃的条件下焙烧1小时后的重量。根据本专利技术,步骤(1)制备得到所述活性中孔材料。其中,将铝源与碱溶液中和成胶,优选成胶的温度为室温至85℃,成胶的pH值为7-11。更优选成胶的温度为20-80℃。步骤(1)中,铝源与碱溶液中和成胶后,加入硅源陈化。加入硅源的量,优选所述硅源与所述铝源分别以SiO2和Al2O3计的重量比为1:1.5-7.5。更优选所述硅源与所述铝源分别以SiO2和Al2O3计的重量比为1:1.5-3.2。进行陈化的条件,优选陈化的温度为室温至90℃,陈化的时间为1-5小时。更优选陈化的温度为20-85℃。步骤(1)中,所述铝源、碱溶液和硅源中至少有一种为含钠原料,得到的固体沉淀物含钠。将固体沉淀物与铵盐或无机酸混合,过滤以得到低钠固体沉淀物。可以将固体沉淀物与铵盐混合,可以采取本领域技术人员所熟知的处理过程,例如将固体沉淀物按沉淀物(干基):铵盐:H2O=1:0.1-1:5-30的重量比混合以进行交换,优选所述混合的温度为室温至100℃,交换1-3次,每次交换0.5-1小时,直至固体沉淀物中钠含量以氧化钠计低于0.3重量%。优选情况,所述铵盐为氯化铵、硫酸铵、硝酸铵、碳酸铵和碳酸氢铵中的至少一种。步骤(1)中,还可以将固体沉淀物与无机酸混合,可以采取本领域技术人员所熟知的处理过程,例如将固体沉淀物按沉淀物(干基):酸:H2O=1:0.03-0.30:5-30的重量比混合以进行交换,优选为1:0.05-0.2:6-20,更进一步优选为1:0.07-0.16:8-15;优选所述混合的温度为室温至100℃,交换一次,至少交换0.2小时,直至固体沉淀物中钠含量以氧化钠计低于0.3重量%。优选地,所述混合的温度为30-80℃,优选为40-70℃;交换的时间为0.2-2小时,优选为0.3-1.5小时,更优选为0.5-1小时。优选情况下,所述无机酸选自硫酸、盐酸和硝酸中的至少一种。步骤(1)中,将低钠固体沉淀物与磷源接触并干燥和焙烧后得到活性中孔材料,其中优选所述磷源为磷酸铵、磷酸氢二铵、磷酸二氢铵和磷酸中的至少一种。步骤(1)中所述接触可以有多种方式,一种优选实施方式为所述接触为将所述磷源与所述低钠固体沉淀物研磨。另一种优选实施方式为所述接触包括:将所述低钠固体沉淀物与水混合形成浆液,所述低钠固体沉淀物以干基计与水的重量比为1:5-20,再将所述磷源加入所述浆液,所述接触的条件包括:温度为室温至90℃,时间为0.2-5小时。所述干燥和焙烧可以除去水或挥发性物质,并有利于所述磷源提供的磷元素沉积或迁移于形成的活性中孔材料的外表面或孔道内,得到所述活性中孔材料。步骤(1)中,所述铝源可以为活性中孔材料的制备工艺中常规使用的各种铝源,例如可以为选自硝酸铝、硫酸铝和氯化铝中的至少一种。本专利技术中,所述碱溶本文档来自技高网
...
一种催化裂化助剂及其制备方法与应用

【技术保护点】
一种催化裂化助剂的制备方法,该方法包括以下步骤:(1)将铝源与碱溶液中和成胶后,加入硅源陈化,得到固体沉淀物,其中所述铝源、碱溶液和硅源中至少有一种为含钠原料;将所得固体沉淀物与铵盐或无机酸混合,过滤得到氧化钠含量为0.3重量%以下的低钠固体沉淀物;将所得低钠固体沉淀物与磷源接触并干燥和焙烧后得到活性中孔材料;(2)将所述活性中孔材料、金属捕集剂、粘土和/或耐热无机氧化物源与水混合打浆,然后进行喷雾干燥、焙烧、洗涤和干燥;其中,以P2O5计的所述磷源与以干基计的所述低钠固体沉淀物的重量比为0.01‑0.1:1。

【技术特征摘要】
1.一种催化裂化助剂的制备方法,该方法包括以下步骤:(1)将铝源与碱溶液中和成胶后,加入硅源陈化,得到固体沉淀物,其中所述铝源、碱溶液和硅源中至少有一种为含钠原料;将所得固体沉淀物与铵盐或无机酸混合,过滤得到氧化钠含量为0.3重量%以下的低钠固体沉淀物;将所得低钠固体沉淀物与磷源接触并干燥和焙烧后得到活性中孔材料;(2)将所述活性中孔材料、金属捕集剂、粘土和/或耐热无机氧化物源与水混合打浆,然后进行喷雾干燥、焙烧、洗涤和干燥;其中,以P2O5计的所述磷源与以干基计的所述低钠固体沉淀物的重量比为0.01-0.1:1,所述活性中孔材料以氧化物重量计的无水化学表达式为:(0-0.2)Na2O·(50-86)Al2O3·(12-50)SiO2·(0.5-10)P2O5。2.根据权利要求1所述的制备方法,其中,步骤(1)中所述活性中孔材料以氧化物重量计的无水化学表达式为:(0.08-0.12)Na2O·(50.2-84)Al2O3·(12.3-48)SiO2·(1.5-9.3)P2O5。3.根据权利要求1所述的制备方法,其中,所述活性中孔材料具有拟薄水铝石物相结构,所述活性中孔材料以氧化物重量计的无水化学表达式为:0.08Na2O·67.3Al2O3·27.3SiO2·5.1P2O5,或0.11Na2O·55.4Al2O3·41.2SiO2·2.9P2O5。4.根据权利要求1或2所述的制备方法,其中,所述活性中孔材料的表面积为200-600m2/g,孔容为0.3-1.8cm3/g,平均孔径为8-18nm。5.根据权利要求4所述的制备方法,其中,所述活性中孔材料的表面积为250-550m2/g,孔容为0.6-1.6cm3/g,平均孔径为8-15nm。6.根据权利要求1所述的制备方法,其中,在步骤(1)中,所述磷源为磷酸铵、磷酸氢二铵、磷酸二氢铵和磷酸中的至少一种。7.根据权利要求1或6所述的制备方法,其中,在步骤(1)中,所述接触为将所述磷源与所述低钠固体沉淀物研磨。8.根据权利要求1所述的制备方法,其中,在步骤(1)中,所述接触包括:将所述低钠固体沉淀物与水混合形成浆液,所述低钠固体沉淀物以干基计与水的重量比为1:5-20,再将所述磷源加入所述浆液,所述接触的条件包括:温度为室...

【专利技术属性】
技术研发人员:陈蓓艳陈辉朱玉霞黄志青罗一斌蒋文斌宋海涛郑金玉沈宁元
申请(专利权)人:中国石油化工股份有限公司中国石油化工股份有限公司石油化工科学研究院
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1