水下机器人用滚动膜片式浮力调节装置制造方法及图纸

技术编号:13273671 阅读:40 留言:0更新日期:2016-05-18 23:42
本实用新型专利技术涉及浮力调节装置,具体地说是一种水下机器人用滚动膜片式浮力调节装置,固定筒位于耐压舱体的内部,固定筒的一端及耐压缸体的一端均安装在耐压舱体的同一端,耐压缸体的另一端连接有带排水口的缸帽;固定筒的另一端安装有轴承座,滚珠丝杠与轴承座转动连接,动力源通过固定座安装在轴承座上,并与滚珠丝杠相连;活塞杆位于耐压缸体与固定筒的内部,一端与滚珠丝杠上螺纹连接的丝杠螺母相连,另一端连接有活塞,滚动膜片安装在活塞上,边缘压紧在缸帽与耐压缸体之间;直线电位计安装在固定座上,直线电位计的拉杆与安装在活塞杆一端的测位连接件相连。本实用新型专利技术具有结构紧凑、工作可靠、高效率、响应快、高精度等特点。

【技术实现步骤摘要】

本技术涉及浮力调节装置,具体地说是一种水下机器人用滚动膜片式浮力调节装置
技术介绍
水下机器人作为一种水下测量、作业平台,已经广泛应用在海洋科学研究、海洋工程、海洋资源勘探、救援打捞等应用领域。通常水下机器人在作业过程中要保持稳定的浮力状态,如AUV(无缆水下自治机器人)保持中性状态,可以保证AUV的定深悬停;滑翔机保持稳定正(负)的浮力状态,可以保证其稳定的上浮(下潜)。然而,受海水密度变化的影响,水下机器人的浮力状态会发生波动,从而影响水下机器人的运动状态。通过专用的浮力调节装置,根据水下机器人作业海域的海水密度情况,自动调节水下机器人的排水体积来达到期望的浮力状态。因此研究模块化、结构紧凑、精度高、功耗低、稳定可靠的水下机器人用浮力调节装置,对提高水机器人的整体性能具有重要作用。目前,调节水下机器人浮力的方法主要有两种,一种是采用舱内的液压系统调节载体的外挂油囊大小来实现浮力调节,这种方式适用于深海高压环境,但通常液压系统安装调试较为复杂,且系统总效率偏低、浮力调节精度较差。或者采用活塞直接推排水的方式来实现自身体积大小的改变,通过直线电位计检测活塞的位置可以精确控制载体的体积改变量,但由于活塞运动过程为动密封,长时间工作会有磨损泄露现象。
技术实现思路
为了解决现有调节外挂油囊大小实现浮力调节以及活塞直接推排水实现体积大小变化两种方式存在的上述问题,本技术的目的在于提供一种水下机器人用滚动膜片式浮力调节装置。本技术的目的是通过以下技术方案来实现的:本技术包括缸帽、耐压缸体、滚动膜片、活塞、固定筒、直线电位计、动力源、活塞杆、滚珠丝杠、丝杠螺母、轴承座及耐压舱体,其中固定筒位于耐压舱体的内部,该固定筒的一端及所述耐压缸体的一端均安装在所述耐压舱体的同一端,所述耐压缸体的另一端连接有带排水口的缸帽;所述固定筒的另一端安装有轴承座,所述滚珠丝杠与该轴承座转动连接,所述动力源通过固定座安装在轴承座上,并与所述滚珠丝杠相连;所述活塞杆位于耐压缸体与固定筒的内部,一端与所述滚珠丝杠上螺纹连接的丝杠螺母相连,另一端连接有活塞,所述滚动膜片安装在该活塞上,边缘压紧在所述缸帽与耐压缸体之间;所述直线电位计安装在所述固定座上,该直线电位计的拉杆与安装在所述活塞杆一端的测位连接件相连;所述动力源驱动滚珠丝杠转动,通过该滚珠丝杠与所述丝杠螺母将回转运动转化为所述活塞杆带动活塞及滚动膜片的直线往复移动,通过推排水实现水下机器人的浮力调节。其中:所述滚动膜片的中部安装在活塞上,中部外围的部分卷积后放入所述活塞侧面与耐压缸体内壁之间,所述缸帽和耐压缸体压紧滚动膜片的边缘并固接;所述滚动膜片随活塞杆直线往复移动,与所述活塞及耐压缸体之间滚动摩擦;所述动力源包括双向超越离合器及直流电机,固定座为离合器固定座,所述双向超越离合器通过离合器固定座安装在所述轴承座上;所述直流电机安装在离合器固定座上,该直流电机的电机轴插入所述双向超越离合器的主动端,所述滚珠丝杠的输入端插入双向超越离合器的从动端;所述耐压缸体的一端安装有尼龙导向套,该尼龙导向套套设在所述活塞杆上,与所述活塞杆之间为非圆形配合;所述固定筒的侧壁上沿轴向开有条形孔,所述测位连接件穿过该条形孔连接于所述活塞杆的一端,所述测位连接件在活塞杆直线往复移动的过程中在所述条形孔内往复移动;所述滚动膜片朝向缸帽的一侧中部设有膜片压紧件,该膜片压紧件、滚动膜片及活塞通过螺钉共同安装在所述活塞杆的另一端;所述轴承座内的两端设有角接触球轴承,位于两端角接触球轴承之间设有推力滚子轴承,所述滚珠丝杠的输入端穿过角接触球轴承及推力滚子轴承,并通过锁紧螺母锁紧。本技术的优点与积极效果为:1.本技术通过滚动膜片将外界海水与舱内隔绝,形成可变体积的浮力调节装置,采用滚动膜片代替了传统活塞推排水的方式,将传统的活塞的推排水过程中的滑动摩擦转化为了滚动摩擦,将活塞运动的动密封转化为静密封,避免了传统活塞长时间往复运行造成密封圈磨损而泄露的情况,系统更加可靠稳定。2.本技术将滚珠丝杠与双向超越离合器配合使用,既实现了系统的自锁功能,又提尚了系统效率。3.本技术采用直线电位计对活塞的轴向位置进行测量,能够实时精确地监测浮力变化量。4.本技术由机械传动结构组成,比液压系统的反应速度更快,结构更加简单紧凑。5.本技术结构紧凑、工作可靠、效率高、精度高、响应快。6.本技术成本低,不需特殊加工零部件,磨损零部件易于重新加工与更换。【附图说明】图1为本技术的内部结构示意图;图2为本技术排水前的局部结构示意图;图3为本技术排水后的局部结构示意图;其中:I为缸帽,2为耐压缸体,3为滚动膜片,4为活塞,5为尼龙导向套,6为固定筒,7为测位连接件,8为直线电位计,9为角接触球轴承,10为推力滚子轴承,11为锁紧螺母,12为双向超越离合器,13为直流电机,14为膜片压紧件,15为活塞杆,16为滚珠丝杠,17为丝杠螺母,18为轴承座,19为离合器固定座,20为电机固定件,21为耐压舱体,22为条形孔,23为排水口。【具体实施方式】下面结合附图对本技术作进一步详述。如图1所示,本技术包括缸帽1、耐压缸体2、滚动膜片3、活塞4、尼龙导向套5、固定筒6、测位连接件7、直线电位计8、动力源、膜片压紧件14、活塞杆15、滚珠丝杠16、丝杠螺母17、轴承座18及耐压舱体21,其中耐压舱体21、固定筒6及耐压缸体2均为回转体结构,耐压舱体21为一端开口的柱状内部中空结构,固定筒6位于耐压舱体21的内部,该耐压缸体2及固定筒6均为内部中空结构。固定筒6的一端及耐压缸体2的一端均安装在耐压舱体21的同一端(开口端),耐压缸体2的另一端固接有带排水口 23的缸帽I。轴承座18位于耐压舱体21内部,固定在固定筒6的另一端上;该轴承座18内的两端设有角接触球轴承9,位于两端角接触球轴承9之间设有推力滚子轴承10,滚珠丝杠16的一端(输入端)穿过角接触球轴承9及推力滚子轴承10、与轴承座18转动连接,并通过锁紧螺母11锁紧。动力源位于耐压舱体21内部,通过固定座安装在轴承座18上,并与滚珠丝杠16相连。本实施例的动力源包括双向超越离合器12及直流电机13,固定座为离合器固定座19,双向超越离合器12通过离合器固定座19安装在轴承座18上;直流电机13安装在离合器固定座19上,该直流电机13的电机轴插入双向超越离合器12的主动端,滚珠丝杠16的输入端插入双向超越离合器12的从动端。活塞杆15位于耐压缸体2与固定筒6的内部,该活塞杆15为一端开口的柱状内部中空结构,滚珠丝杠16的另一端位于活塞杆15内。活塞杆15的一端(开口端)位于固定筒6内、固接有丝杠螺母17,该丝杠螺母17螺纹连接于滚珠丝杠16上;活塞杆15的另一端位于耐压缸体2内、固接有活塞4。滚动膜片3的中部安装在活塞4上,中部外围的部分卷积后放入活塞4侧面与耐压缸体2内壁之间,缸帽I和耐压缸体2压紧滚动膜片3的边缘并固接。直流电机13驱动滚珠丝杠16转动,通过该滚珠丝杠16与丝杠螺母17将回转运动转化为活塞杆15带动活塞4及滚动膜片3的直线往复移动,滚动膜片3在随活塞杆15直线往复移动过程中,与活塞4及耐本文档来自技高网...

【技术保护点】
一种水下机器人用滚动膜片式浮力调节装置,其特征在于:包括缸帽(1)、耐压缸体(2)、滚动膜片(3)、活塞(4)、固定筒(6)、直线电位计(8)、动力源、活塞杆(15)、滚珠丝杠(16)、丝杠螺母(17)、轴承座(18)及耐压舱体(21),其中固定筒(6)位于耐压舱体(21)的内部,该固定筒(6)的一端及所述耐压缸体(2)的一端均安装在所述耐压舱体(21)的同一端,所述耐压缸体(2)的另一端连接有带排水口(23)的缸帽(1);所述固定筒(6)的另一端安装有轴承座(18),所述滚珠丝杠(16)与该轴承座(18)转动连接,所述动力源通过固定座安装在轴承座(18)上,并与所述滚珠丝杠(16)相连;所述活塞杆(15)位于耐压缸体(2)与固定筒(6)的内部,一端与所述滚珠丝杠(16)上螺纹连接的丝杠螺母(17)相连,另一端连接有活塞(4),所述滚动膜片(3)安装在该活塞(4)上,边缘压紧在所述缸帽(1)与耐压缸体(2)之间;所述直线电位计(8)安装在所述固定座上,该直线电位计(8)的拉杆与安装在所述活塞杆(15)一端的测位连接件(7)相连;所述动力源驱动滚珠丝杠(16)转动,通过该滚珠丝杠(16)与所述丝杠螺母(17)将回转运动转化为所述活塞杆(15)带动活塞(4)及滚动膜片(3)的直线往复移动,通过推排水实现水下机器人的浮力调节。...

【技术特征摘要】

【专利技术属性】
技术研发人员:谭智铎李硕金文明王旭王启家郭涛
申请(专利权)人:中国科学院沈阳自动化研究所
类型:新型
国别省市:辽宁;21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1