一种发光二极管外延片及其制备方法技术

技术编号:11195109 阅读:113 留言:0更新日期:2015-03-26 00:38
本发明专利技术公开了一种发光二极管外延片及其制备方法,属于半导体光电技术领域。所述方法包括:在衬底上依次生长低温缓冲层、三维重结晶成核层、缓冲恢复层、N型层、多量子阱层、P型层,生长所述缓冲恢复层包括:在三维重结晶成核层上,依次以第一生长速率0.2~1.0nm/sec生长第一缓冲恢复子层,以第二生长速率0.50~2.0nm/sec生长第二缓冲恢复子层,以第三生长速率0.2~1.0nm/sec生长第三缓冲恢复子层,且第二生长速率大于第一生长速率和第三生长速率。本发明专利技术通过分三层生长缓冲恢复层,且三层生长的生长速率合理搭配,能减少引入多量子阱层的晶体缺陷,进而提高制备出来的外延片的质量。

【技术实现步骤摘要】
一种发光二极管外延片及其制备方法
本专利技术涉及半导体光电
,特别涉及一种发光二极管外延片及其制备方法。
技术介绍
发光二极管(LightEmittingDiodes,简称“LED”)因具有节能环保、可靠性高、使用寿命长等优点而受到广泛的关注和应用。常规的LED外延片制备方法中,会通过金属有机化合物化学气相沉淀(Metal-organicChemicalVaporDeposition,简称“MOCVD”)的方法,在衬底材料(例如:蓝宝石、硅、碳化硅等)上生长外延层。在实现本专利技术的过程中,专利技术人发现现有技术至少存在以下问题:由于衬底与外延层之间存在晶格失配,会使得外延层中晶体生长时,晶体中的原子的规律排列被打破,进而在外延层的生长过程中产生晶体缺陷(位错),该晶体缺陷会随着外延层的生长而向上衍生,并被引入到外延层的多量子阱层中,降低多量子阱层中载流子的复合效率,进而会降低在衬底材料上生长出来的外延片的质量。
技术实现思路
为了解决常规LED外延片制备方法中,由衬底材料与外延层之间存在的晶格失配产生的晶体缺陷被引入到多量子阱层中,降低了在衬底材料上生长出来的外延片的质量的问题,本专利技术实施例提供了一种发光二极管外延片及其制备方法。所述技术方案如下:一方面,提供了一种发光二极管外延片制备方法,所述方法包括:在衬底上依次生长低温缓冲层、三维重结晶成核层、缓冲恢复层、N型层、多量子阱层以及P型层,生长所述缓冲恢复层包括:在所述三维重结晶成核层上,以第一生长速率生长第一缓冲恢复子层;在所述第一缓冲恢复子层上,以第二生长速率生长第二缓冲恢复子层;在所述第二缓冲恢复子层上,以第三生长速率生长第三缓冲恢复子层;所述第一生长速率为0.2~1.0nm/sec,所述第二生长速率为0.50~2.0nm/sec,所述第三生长速率为0.2~1.0nm/sec,且所述第二生长速率大于所述第一生长速率和所述第三生长速率;当所述发光二极管外延片为绿光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.45-0.5nm/sec、0.55-0.6nm/sec和0.5-0.55nm/sec;当所述发光二极管外延片为蓝光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.4-0.45nm/sec、0.55-0.6nm/sec和0.45-0.5nm/sec。具体地,所述第二缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为1.3~4,所述第三缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为0.3~3。进一步地,所述第一缓冲恢复子层的厚度为50~150nm,所述第二缓冲恢复子层的厚度为200~800nm,所述第三缓冲恢复子层的厚度为50~150nm。进一步地,所述第一缓冲恢复子层、所述第二缓冲恢复子层以及所述第三缓冲恢复子层的生长温度均为950℃~1100℃,所述第一缓冲恢复子层、所述第二缓冲恢复子层以及所述第三缓冲恢复子层的生长压力均为100~500Torr。另一方面,提供了一种发光二极管外延片,所述发光二极管外延片包括:衬底和依次覆盖在所述衬底上的低温缓冲层、三维重结晶成核层、缓冲恢复层、不掺杂层、N型层、多量子阱层、低温P型层、电子阻挡层、高温P型层以及P型欧姆接触层,其特征在于,所述缓冲恢复层包括:以第一生长速率生长的第一缓冲恢复子层、以第二生长速率生长的第二缓冲恢复子层以及以第三生长速率生长的第三缓冲恢复子层,所述第一缓冲恢复子层覆盖在所述三维重结晶成核层上,所述第二缓冲恢复子层覆盖在所述第一缓冲恢复子层上,所述第三缓冲恢复子层覆盖在所述第二缓冲恢复子层上,所述第一生长速率为0.2~1.0nm/sec,所述第二生长速率为0.50~2.0nm/sec,所述第三生长速率为0.2~1.0nm/sec,且所述第二生长速率大于所述第一生长速率和所述第三生长速率,当所述发光二极管外延片为绿光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.45-0.5nm/sec、0.55-0.6nm/sec和0.5-0.55nm/sec;当所述发光二极管外延片为蓝光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.4-0.45nm/sec、0.55-0.6nm/sec和0.45-0.5nm/sec。具体地,所述第二缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为1.3~4,所述第三缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为0.3~3。进一步地,所述第一缓冲恢复子层的厚度为50~150nm,所述第二缓冲恢复子层的厚度为200~800nm,所述第三缓冲恢复子层的厚度为50~150nm。进一步地,所述多量子阱层为5~11个周期的InGaN/GaN量子阱,每个周期的所述InGaN/GaN量子阱包括InGaN阱层和GaN垒层,所述InGaN阱层的厚度为3~4nm,所述GaN垒层的厚度为9~20nm。本专利技术实施例提供的技术方案带来的有益效果是:通过分三层生长缓冲恢复层,即以第一生长速率生长第一缓冲恢复子层;在第一缓冲恢复子层上,以第二生长速率生长第二缓冲恢复子层;在第二缓冲恢复子层上,以第三生长速率生长第三缓冲恢复子层;而第一生长速率为0.2~1.0nm/sec,第二生长速率为0.50~2.0nm/sec,第三生长速率为0.2~1.0nm/sec,第二生长速率大于第一生长速率和第三生长速率。在本专利技术中,第一缓冲恢复子层采用相对较慢的第一生长速率生长,有利于第一缓冲恢复子层的结晶颗粒在三维重结晶成核层中的三维岛状晶粒的岛间沉积(即岛与岛之间沉积),这样有利于填平三维岛状晶粒之间的间隙,阻隔一部分晶体缺陷继续向上衍生。第二缓冲恢复子层采用相对较快的第二生长速率生长,使得第二缓冲恢复子层能迅速铺平第一缓冲恢复子层表面的未铺平的粗糙结构,既能有效减少缓冲恢复层的工艺生长时间,又有利于后续其他外延层的生长。第三缓冲恢复子层采用较慢的第三生长速率生长,可以减小第三缓冲恢复子层不同位置生长速率的差异,使得第三缓冲恢复子层中的晶体生长更均匀,第三缓冲恢复子层的表面更平整,有利于在其上生长的外延层结构减少引入晶体缺陷,即进一步阻隔了晶体缺陷的向上衍生。通过上述分三层生长缓冲恢复层,能有效减少引入多量子阱层的晶体缺陷,从而提高制备出来的外延片的质量,同时也减少缓冲恢复层的生长时间,提高外延片的制备速度。附图说明为了更清楚地说明本专利技术实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本专利技术实施例一提供的一种发光二极管外延片制备方法流程图;图2是本专利技术实施例二提供的一种发光二极管外延片制备方法流程图;图3是本专利技术实施例二提供的一种采用发光二极管外延片制备的LED芯片的工作电压检测结果示意图;图4是本专利技术实施例二提供的一种采用发光二极管外延片制备的LED芯片的发光亮度检测结果示意图;图5是本专利技术实施例二提供的一种采用发光二极管外延片制备的LED芯片的抗静电能力检测结果示意图;图6是本专利技术实施本文档来自技高网...
一种发光二极管外延片及其制备方法

【技术保护点】
一种发光二极管外延片制备方法,所述方法包括:在衬底上依次生长低温缓冲层、三维重结晶成核层、缓冲恢复层、N型层、多量子阱层以及P型层,其特征在于,生长所述缓冲恢复层包括:在所述三维重结晶成核层上,以第一生长速率生长第一缓冲恢复子层;在所述第一缓冲恢复子层上,以第二生长速率生长第二缓冲恢复子层;在所述第二缓冲恢复子层上,以第三生长速率生长第三缓冲恢复子层;所述第一生长速率为0.2~1.0nm/sec,所述第二生长速率为0.50~2.0nm/sec,所述第三生长速率为0.2~1.0nm/sec,且所述第二生长速率大于所述第一生长速率和所述第三生长速率。

【技术特征摘要】
1.一种发光二极管外延片制备方法,所述方法包括:在衬底上依次生长低温缓冲层、三维重结晶成核层、缓冲恢复层、N型层、多量子阱层以及P型层,其特征在于,生长所述缓冲恢复层包括:在所述三维重结晶成核层上,以第一生长速率生长第一缓冲恢复子层;在所述第一缓冲恢复子层上,以第二生长速率生长第二缓冲恢复子层;在所述第二缓冲恢复子层上,以第三生长速率生长第三缓冲恢复子层;所述第一生长速率为0.2~1.0nm/sec,所述第二生长速率为0.50~2.0nm/sec,所述第三生长速率为0.2~1.0nm/sec,且所述第二生长速率大于所述第一生长速率和所述第三生长速率;当所述发光二极管外延片为绿光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.45-0.5nm/sec、0.55-0.6nm/sec和0.5-0.55nm/sec;当所述发光二极管外延片为蓝光二极管外延片时,所述第一生长速率、所述第二生长速率和所述第三生长速率分别为:0.4-0.45nm/sec、0.55-0.6nm/sec和0.45-0.5nm/sec。2.根据权利要求1所述的方法,其特征在于,所述第二缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为1.3~4,所述第三缓冲恢复子层与所述第一缓冲恢复子层的厚度的比值范围为0.3~3。3.根据权利要求2所述的方法,其特征在于,所述第一缓冲恢复子层的厚度为50~150nm,所述第二缓冲恢复子层的厚度为200~800nm,所述第三缓冲恢复子层的厚度为50~150nm。4.根据权利要求1-3任一项所述的方法,其特征在于,所述第一缓冲恢复子层、所述第二缓冲恢复子层以及所述第三缓冲恢复子层的生长温度均为950℃~1100℃,所述第一缓冲恢复子层、所述第二缓冲恢复子层以及所述第三缓冲恢复子层的生长压力均为100~500Torr。5.一种发光二极管外延片,所述发光二极管外延片包括:衬底和依次覆盖在所述衬底上的低温缓冲...

【专利技术属性】
技术研发人员:王群郭炳磊葛永晖曹阳张志刚胡加辉魏世祯
申请(专利权)人:华灿光电苏州有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1