本发明专利技术公开了一种提高硅基薄膜太阳能电池光电转换效率的方法,包括:在玻璃或其它透明基板上沉积透明导电氧化物薄膜;在透明导电氧化物薄膜表面依次沉积多结微晶硅或非晶硅电池;在电池表面沉积背电极形成电池芯片;所述方法还包括对所述电池芯片进行热处理和层压封装的步骤。本发明专利技术的方法能够减少制造过程中氧及水蒸汽等对微晶硅电池的污染,同时改善背电极欧姆接触,减少串联电阻,进一步光电转换效率。
【技术实现步骤摘要】
本专利技术涉及光伏太阳能电池
,特别涉及一种。
技术介绍
在光伏电池领域,硅基薄膜太阳电池因其原材料储量丰富、无污染、制备工艺简单及耗能低、便于大面积连续化生产等优点,受到广泛关注。微晶硅介于非晶硅与晶体硅之间,微结构有序性也得到了提高,基本不存在光致衰退效应,微晶硅太阳电池的稳 定性也得到了很大的改善,因此,微晶硅被认为是一种非常具有发展前景的光伏材料。此外,微晶硅可以与非晶硅叠加在一起,构成非晶硅微晶硅叠层电池,可将电池光谱响应长波限从目前非晶硅单结太阳电池的0.9 μ m扩展到1.Ιμ ,能更充分地利用太阳光谱,提高硅薄膜电池的转换效率,有广泛的应用前景。但是比起非晶硅与单晶硅的均匀分布,微晶硅材料的结构更加复杂,它包含着晶粒、晶界、非晶组织与微空洞。由于微晶硅材料不像非晶硅那样致密,其在制备过程中很容易吸附来自反应源气体或本底真空中的残留的氧及水蒸气等成分,使材料发生后氧化现象,进而使电池的性能变差。在硅基薄膜电池中,背反射电极能使透过电池到达背电极的那部分光再反射回来,进行二次吸收,这样可以增加i层的光吸收从而提高电池效率。但是背反射电极的加入会增加串联电阻值,所以要提高电池的转换效率,就要尽量减小串联电阻值,背电极和η层之间必须形成良好的欧姆接触,尽量减少对载流子的阻挡作用。
技术实现思路
因此,本专利技术的目的在于提供一种,能够减少制造过程中氧及水蒸汽等对微晶硅电池的污染,同时改善背电极欧姆接触,减少串联电阻,进一步光电转换效率。本专利技术的一种,包括:在玻璃或其它透明基板上沉积透明导电氧化物薄膜;在透明导电氧化物薄膜表面依次沉积多结微晶硅或非晶硅电池;在电池表面沉积背电极形成电池芯片;所述方法还包括对所述电池芯片进行热处理和层压封装的步骤。可选的,所述热处理的步骤在层压封装步骤之前。可选的,所述热处理的步骤在层压封装步骤之后。可选的,所述热处理的步骤在层压封装步骤之前和之后。可选的,所述热处理步骤的温度在60_250°C。可选的,所述热处理步骤的时间为20-1000分钟。可选的,所述热处理步骤在真空、空气或其它气氛中进行。可选的,所述其它气氛包括N2、Ar、H2。可选的,所述多结电池包括双结电池、三结电池和四结电池。可选的,所述双结电池为非晶硅/微晶硅电池,非晶硅锗/微晶硅电池;所述三结电池为非晶硅/非晶硅锗/微晶娃,或非晶硅/微晶硅/微晶娃,或非晶硅/非晶硅/微晶硅,或非晶硅锗/非晶硅锗/微晶硅电池,或非晶硅/微晶硅/微晶硅锗电池;所述四结电池为非晶硅/非晶硅/微晶硅/微晶娃,或非晶硅/非晶硅/非晶硅锗/微晶娃,或非晶硅/非晶硅/微晶硅锗/微晶娃,或非晶硅/非晶硅/微晶硅/微晶硅错,或非晶娃/非晶娃错/微晶娃错/微晶娃,或非晶娃/非晶娃错/微晶娃/微晶娃电池。与现有技术相比,本专利技术具有以下优点:本专利技术的方法通过执行单结或多结微晶硅薄膜太阳电池后序的热处理工艺,能有效的减少微晶硅的氧及水蒸汽等污染,使微晶硅薄膜的后氧化现象得到抑制,降低载流子的复合,进而增加短路电流。并且能较大的改善背电极的欧姆接触,减少串联电阻,提升开路电压。通过以上工艺设计,在0.7nm/s的高沉积速率和0.8m2的大尺寸的基板上制备出转换效率11.9%以上的非晶硅/微晶硅双结电池和非晶硅/非晶硅锗/微硅三结电池。附图说明通过附图中所示的本专利技术的优选实施例的更具体说明,本专利技术的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记未必指示相同的部分。并未刻意按比例绘制附图,重点在于示出本专利技术的主旨。在附图中,为清楚起见,放大了层的厚度。图1为根据本专利技术方法第一实施例的流程图;图2为根据本专利技术方法第二实施例的流程图;图3为根据本专利技术方法第三实施例的流程图。所述示图是说明性的,而非限制性的,在此不能过度限制本专利技术的保护范围。具体实施例方式为使本专利技术的上述目的、特征和优点能够更加明显易懂,下面结合附图对本专利技术的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本专利技术。但是本专利技术能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本专利技术内涵的情况下做类似推广。因此本专利技术不受下面公开的具体实施的限制。图1为根据本专利技术方法第一实施例的流程图,图2为根据本专利技术方法第二实施例的流程图,图3为根据本专利技术方法第三实施例的流程图。如图所示,本专利技术的包括在玻璃或其它透明基板上沉积透明导电氧化物薄膜的步骤、在透明导电氧化物薄膜表面依次沉积多结微晶硅或非晶硅电池的步骤以及在电池表面沉积背电极形成电池芯片的步骤,此外,所述方法还包括对所述电池芯片进行热处理和层压封装的步骤。在一个实施例中,所述热处理的步骤在层压封装步骤之前进行;在另一个实施例中,所述热处理的步骤在层压封装步骤之后进行;在其它实施例中,所述热处理的步骤在层压封装步骤之前和之后分别进行。上述热处理步骤的温度在60_250°C,热处理步骤的时间为20-1000分钟。热处理步骤在真空、空气或其它气氛中进行,所述其它气氛包括N2、Ar、H2。上述的多结电池包括双结电池、三结电池和四结电池。其中,所述双结电池为非晶硅/微晶硅电池,非晶硅锗/微晶硅电池;所述三结电池为非晶硅/非晶硅锗/微晶娃,或非晶硅/微晶硅/微晶娃,或非晶硅/非晶硅/微晶娃,或非晶硅锗/非晶硅锗/微晶硅电池,或非晶硅/微晶硅/微晶硅锗电池;所述四结电池为非晶硅/非晶硅/微晶硅/微晶娃,或非晶硅/非晶硅/非晶硅锗/微晶娃,或非晶硅/非晶硅/微晶硅锗/微晶娃,或非晶娃/非晶娃/微晶娃/微晶娃错,或非晶娃/非晶娃错/微晶娃错/微晶娃,或非晶娃/非晶硅锗/微晶硅/微晶硅电池。参照实验1:在玻璃基板上采用化学气相沉积法制备900nm的SnO2 = F薄膜,作为电池的前电极。在前电极上采用等离子体增强化学气相沉积法依次沉积IOnm的非晶硅pi层、200nm的非晶硅il层、20nm的纳米硅nl层,nl层的沉积过程中采用硅烷、氢气和磷烷作为反应气体,其中磷烷与硅烷的比例为1.2%,晶化率为66%;接着继续沉积20nm的纳米硅p2层,p2层的沉积过程中采用硅烷、氢气和三甲基硼烷作为反应气体,三甲基硼烷与硅烷的比率为0.8%,晶化率为58%;在p2层上继续沉积2000nm的纳米硅i2层以及30nm的纳米硅n2层。在n2层上溅射60nm的ZnO: Al和IOOnm的Ag复合薄膜作为电池的背电极层;制备好的电池芯片进行层压封装,制备的双结电池的转换效率为9.2%。实施例1:将按照参照实验I工艺制备的双结电池芯片放入150°C烘箱中,在空气气氛下经过50分钟的后序热处理工艺,然后再经过层压封装。电池的转换效率为10.2%实施例2:将按照参照实验I工艺制备的双结电池芯片先经过层压封装,再放Λ 175°C N2气氛保护的退火炉中,经过320分钟的后序热处理工艺。电池的转换效率为10.8%。参照实验2:在玻璃基板上采用化学气相沉积法制备900nm的SnO2 = F薄膜作为电池的前电极。在前电极上采用等离子体增强化学气相沉积法依次沉积IOnm的非晶硅pi层、IOOnm的非晶娃il层、20nm的非晶娃nl层;接着继续沉积20nm的非晶娃p2层;在口2层上继续沉积200nm的非晶娃锗i2层以及20nm的纳本文档来自技高网...
【技术保护点】
一种提高硅基薄膜太阳能电池光电转换效率的方法,包括:在玻璃或其它透明基板上沉积透明导电氧化物薄膜;在透明导电氧化物薄膜表面依次沉积多结微晶硅或非晶硅电池;在电池表面沉积背电极形成电池芯片;所述方法还包括对所述电池芯片进行热处理和层压封装的步骤。
【技术特征摘要】
1.一种提高硅基薄膜太阳能电池光电转换效率的方法,包括: 在玻璃或其它透明基板上沉积透明导电氧化物薄膜; 在透明导电氧化物薄膜表面依次沉积多结微晶硅或非晶硅电池; 在电池表面沉积背电极形成电池芯片; 所述方法还包括对所述电池芯片进行热处理和层压封装的步骤。2.根据权利要求1所述的方法,其特征在于:所述热处理的步骤在层压封装步骤之前。3.根据权利要求1所述的方法,其特征在于:所述热处理的步骤在层压封装步骤之后。4.根据权利要求1所述的方法,其特征在于:所述热处理的步骤在层压封装步骤之前和之后。5.根据权利要求1所述的方法,其特征在于:所述热处理步骤的温度在60-250°C。6.根据权利要求1所述的方法,其特征在于:所述热处理步骤的时间为20-1000分钟。7.根据权利要求1所述的方法,其特征在...
【专利技术属性】
技术研发人员:曲铭浩,胡安红,汝小宁,张津燕,徐希翔,
申请(专利权)人:福建铂阳精工设备有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。