本发明专利技术提供了一种新型的药物渗透泵制剂,其包括片芯和包衣膜,基于片芯总重,所述片芯包含:1-60wt%的药物,5-90wt%的腔室结构形成材料,1-50wt%的腔室结构形状调节剂,0.5-10wt%的润滑剂,和1-60wt%的药学上可接受的辅料;基于包衣膜总重,所述包衣膜包含:40-90wt%的半透膜包衣材料,5-40wt%的致孔剂,和0-20wt%的增塑剂。所述腔室结构形成材料遇水后能够在片芯内部形成微细泡状、孔状或囊状腔室型结构,通过对微细腔室结构的形态、大小及其演化速度的调控来实现对药物释放速度的控制。本发明专利技术的渗透泵制剂适用于水易溶性药物和水难溶性药物,尤其是低溶解性药物或pH依赖性药物的控制释放。
【技术实现步骤摘要】
本专利技术涉及药物制剂领域,具体涉及一种具有特殊内部微细腔室结构的新型药物渗透泵制剂。该新结构类型的渗透泵制剂适用于水易溶性药物和水难溶性药物,尤其适用于低溶解性药物的控释给药。
技术介绍
渗透泵制剂因其具有恒速释药特征,能避免普通制剂给药后造成的血药浓度波动现象,减少对胃肠道及全身的副作用,其释放特征受胃肠道可变因素的影响小,渗透泵的不同宏观结构及其应用得到迅速发展和重视,多达数百个国内外专利均侧重在渗透泵的宏观结构上,设计了五花八门的数十种宏观结构,但是没有采用渗透泵内部的微细结构和其动态变化来控制药物释放。关于渗透泵制剂的文献报道始见于1955年,最早依靠渗透压作为释药动力的给药装置是Rose-Nelson型渗透泵。该装置由药室、盐室和水室以及水室与盐室间的刚性半透膜、盐室与药室间的弹性隔膜、装置外包覆的刚性膜等6大部分组成。由于工艺复杂,体积庞大,达到80cm3,不具人体实用价值,Higuchi和Leeper对其进行了改进,于1971年设计出Higuchi-Leeper型渗透泵,去掉了水室,改为直接利用机体内的水分,从而大大简化了渗透泵装置的结构。1974年,由Theeuwes和美国Alza公司共同开发了初级渗透泵,其组成为含药片芯,外包一层半透膜,包衣膜上开一释药小孔,使渗透泵制剂简化成为普通包衣片的形式,因此适合于工业化生产。20世纪80年代渗透泵系统出现一种新的渗透泵设计,即微孔型渗透泵,在控释膜上含有高比例的水溶性成分,提高包衣膜的通透性,使半透膜变为药物分子也能透过的微孔性膜,与水接触后水溶性成分溶解,使得控释膜变为微孔膜。微孔型渗透泵去除了渗透泵制备过程中的打孔工序,然而,由于包衣膜中大量孔隙的出现,扩散作用随之增强,导致释放曲线由零级向一级转变。对于一些难溶性或极易溶的药物,仅凭药物本身的渗透性很难达到理想的释放速率。因此人们在单层渗透泵的基础上加一动力层,通过调节动力层的膨胀速率进而控制药物的释放速率。1982年的推拉式渗透泵则适用于易溶或难溶性药物,它是一种包有半透膜的双层片。推拉式渗透泵上层是由药物和辅料组成的含药层,下层为聚合物和渗透活性物质组成的动力层。含药层通过释药小孔与外界相联,当服用药物后,动力层内的聚合物推动药室内的药物经由释药小孔释放。德国拜耳公司开发的硝苯地平控释片,即为这种双层渗透泵片。在此渗透泵基础上,人们进行了多种改良,设计开发了多种具有不同宏观结构特征的剂型,例如延迟释放系统(US5221278)(用于脉冲制剂或延迟制剂)、活塞系统(US6132420)(可以获得良好的延迟和脉冲效果)等。然而推拉式渗透泵制约其工业化生产,除了要进行打孔之外,还要进行含药层的识别。在1991年出现了液体口服渗透泵系统,可将液体药物制备成渗透泵,包括软胶囊液体渗透泵(US7338663)、硬胶囊液体渗透泵和时滞型液体渗透泵(US20036596314)。药液被包裹在软胶囊中,在其外依次包隔离层、渗透促进层和控释膜层,释药孔贯穿这3层。当此系统与外界的水环境接触后,水分由控释膜渗入,渗透层吸水后溶胀,使药物从小孔释放。近年来,在已有的各种渗透泵宏观结构基础上,相继出现了一些新的设计。如以硝苯地平为模型药物研制的三明治型渗透泵片系统(L.Liu,et al.J Control.Release, 2000,68:145-156),它由中间的推动层和两个附着的药物层组成片芯,片芯外包一层半透膜,此系统的优点是药物能从相对两侧的小孔释放,因此避免了某些药物对胃肠道黏膜的刺激作用。夹芯渗透泵片免去了药物层的辨认过程。双层混合孔型渗透泵制剂(D. Prabakaran, et al. Int. J. Pharm. , 2004, 284:95-108),上层为单孔释药,下层为在体微孔释药,有利于不同溶解度药物的同步释放。将单层渗透泵片发展成可挤压芯系统,用于递送高剂量的溶解度低的药物活性成分。不对称膜渗透泵控释制剂(US4008719、US6899887)是利用极薄而坚硬的表层和较厚的海绵状多孔基底层构成的不对称膜,以其水通透性高的特点,较好地解决了渗透泵控释制剂中难溶性药物释放不完全的问题,而且易于通过控制膜的结构和孔隙度来调节膜对水的通透性。药剂学中的致孔剂一般是指在包衣液中加入的增加包衣膜通透性的辅料,从而提 高药物通过该膜的速率,这一类的致孔剂直接用于片芯内时,并未见报道能形成泡状结构。药用辅料中的一些高分子材料本身虽不具备多孔性,但由于具有一定的黏度与溶解度,在片芯内遇水后,由于表面张力的作用和不同辅料的溶解性质差异,可能在片芯内形成微细的泡状或囊状腔室型结构,同时,随着片芯的水化程度的变化,这类微细腔室结构在片芯内部会发生定向迁移、积聚、成长等具有一定规律的演化。至今,未见有通过片芯内部结构演化的机制来实现控释的渗透泵专利。美国专利(US4203439, US4331728)曾有报道过利用可产生气泡的物质作为片芯内部推动室,使药物恒速释放且释放完全,但这种渗透泵的结构是气泡形成的压力推动,不涉及由液态囊泡形成的泡状微细结构。
技术实现思路
本专利技术的目的是提供一种具有新型结构特征的渗透泵制剂,在其内部具有微细泡状、孔状或囊状的动态腔室结构,并提供该结构类型渗透泵制剂的释放特征调控方法与微细结构测定方法。为此,本专利技术提供了一种基于微细泡状、孔状或囊状腔室结构的渗透泵制剂,通过对微细腔室结构的形态、大小及其演化速度的调控来实现对药物释放速度的控制。本专利技术的渗透泵制剂适用于水易溶性药物和水难溶性药物,尤其是低溶解性药物或PH依赖性药物的控制释放,所述渗透泵制剂释药完全、释药速率可控。与传统的通过宏观结构来控制药物释放的渗透泵制剂相比较,本专利技术提供的渗透泵制剂的结构调控性良好且易于实现。同时本专利技术提供的渗透泵制剂所具有的微细腔室结构是一类动态结构,其微细腔室结构的表面积与总体积等参数的演变与释放特征高度相关。当本专利技术的渗透泵制剂与水接触时,其内部生成微细泡状结构,泡状结构的总体积Vb由O开始,逐渐增加;而片剂的外部膜形成的渗透泵外形体积(Vm)在接触水后可能略有增加,但在释放过程中基本保持不变。因此,(I)设片芯内固形物在接触水后,在一个大气压下(即不在渗透泵内,完全被水化后)、相当于由渗透泵小孔中排出时的半固形物“浓度”时,其体积为Vd,则,令权利要求1.一种药物渗透泵制剂,其包括片芯和包衣膜, 基于片芯总重,所述片芯包含l-60wt%的药物,5-90wt%的腔室结构形成材料,l-50wt%的腔室结构形状调节剂,O. 5-10wt%的润滑剂,和l_60wt%的药学上可接受的辅料; 基于包衣膜总重,所述包衣膜包含40-90wt%的半透膜包衣材料,5-40wt%的致孔剂,和0-20wt%的增塑剂。2.根据权利要求I所述的药物渗透泵制剂,其中, 基于片芯总重,所述片芯包含20-50wt%的药物,10-60wt%的腔室结构形成材料,5-40wt%的腔室结构形状调节剂,l-5wt%的润滑剂,和5-40wt%的药学上可接受的辅料; 基于包衣膜总重,所述包衣膜包含60-80wt%的半透膜包衣材料,10-30wt%的致孔剂,和0-15wt%的增塑剂。3.根据权利要求I或2所述的药本文档来自技高网...
【技术保护点】
一种药物渗透泵制剂,其包括片芯和包衣膜,基于片芯总重,所述片芯包含:1?60wt%的药物,5?90wt%的腔室结构形成材料,1?50wt%的腔室结构形状调节剂,0.5?10wt%的润滑剂,和1?60wt%的药学上可接受的辅料;基于包衣膜总重,所述包衣膜包含:40?90wt%的半透膜包衣材料,5?40wt%的致孔剂,和0?20wt%的增塑剂。
【技术特征摘要】
【专利技术属性】
技术研发人员:张继稳,伍丽,殷宪振,郭桢,李海燕,
申请(专利权)人:中国科学院上海药物研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。