制备超细晶材料的强塑性变形方法技术

技术编号:2582367 阅读:308 留言:0更新日期:2012-04-11 18:40
一种制备超细晶材料的强塑性变形方法,属于材料技术领域。本发明专利技术采用由底座、套筒和扭转螺母组成的模具,将开口圆环试样置于底座之上,装上套筒并压紧,然后装上扭转螺母;将已装有试样的模具置于平台上,用压力垂直作用于套筒上,当压力施加到设定数值,保持压力载荷,并扭动扭转螺母,从而使得材料在剪切力的作用下产生均匀的塑性变形。本发明专利技术在处理圆环试样时,材料在一定的压强下发生塑性变形,然后再通过模具的带动使之在内、外圆环面摩擦力的作用下扭转,从而产生剪切变形来处理材料,这种方法在理论上可以达到较大的变形量,且对变形量的大小可以控制。

【技术实现步骤摘要】

本专利技术涉及的是一种材料
的方法,具体是一种。
技术介绍
由于超细晶材料(包括纳米材料和亚微晶材料)表现出许多不寻常的物理、化学和力学性能(如居里温度、德拜温度、磁导率,弹性模量、扩散系数,断裂强度、延展性及较低温度时高应变速率下的超塑性等),这些逐渐引起人们的关注,研究结果已有大量报道。超细晶材料的制备一般包括粉体、块体和薄膜的合成制备,制备方法可以分为3类化学法、物理法和机械法。机械法是制备块体超细晶材料的主要方法,目前为止主要包括1)等通道转角挤压法当试样特制的模具中两通道的交叉处时,在不改变材料横截面的情况下以纯剪切的方式实现块体材料强烈的塑性变形。2)高压扭转法在室温条件下,模具中的试样被施以GPa级的高压,同时通过转动冲头来扭转试样,利用剪切应力使试样产生大塑性变形。经对现有技术的文献检索发现,(R.Z.Valiev)等在《Material Science andEngineering A》(《材料科学与工程A》,1993年第168期第141页)上发表的《Structure and properties of ultrafine-grained materials produced bysevere plastic deformation》(《使用强塑性变形方法制备的超细晶粒材料的结构和性质》),该文中提出使用高压扭转法制备超级晶粒材料,具体方法为高压扭转法的装置主要是由模具和压头组成,一端固定,而另一端是运动的,试样被放置于模具中,然后靠近压头和模具,在几个GPa的压力下扭转变形。其不足在于该工艺对模具的要求很高;而且在如此高压下,难以制备出大尺度的块体超细晶材料,而且圆形试样在径向上变形量不均匀,有梯度变化,也使得制备的材料组织的均匀性难以控制。
技术实现思路
本专利技术的目的在于克服现有不足和局限性,主要是过程连续性和施加均匀变形量的问题,提出一种,即旋转剪切法。本专利技术在处理圆环试样时,材料在一定的压强下发生塑性变形,然后再通过模具的带动使之在内、外圆环面摩擦力的作用下扭转,从而产生剪切变形来处理材料,这种方法在理论上可以达到较大的变形量,且对变形量的大小可以控制。本专利技术是通过以下技术方案实现的,本专利技术采用的模具包括底座、套筒和扭转螺母,将开口圆环试样置于底座之上,装上套筒并压紧,然后装上扭转螺母。将模具置于平台上,将压力垂直作用于套筒上。当机器的压力施加到设定数值,保持压力载荷,并使用扳手扭动扭转螺母,从而使得试样在剪切力的作用下产生均匀的塑性变形。整个过程是通过扭转螺母带动试样旋转剪切,其旋转剪切的角度与扭转螺母的扭转角度相等。本专利技术中旋转剪切的角度,可选取的范围在大于0度的任意角度。压力的选取,视所处理的材料而定,要使被处理材料发生一定程度的压缩变形,通常选取的压力范围在800MPa到4GPa之间。本专利技术所使用的模具各部分,可由各种模具钢,如Cr12MoV钢,Cr12钢等;硬质合金,以及陶瓷基复合材料加工而成。开始实验时圆环上的开口细线,在实验结束时闭合成一条曲线。沿着该曲线方法进行显微硬度取值,结果表明由于剪切形变使晶粒细化,显微硬度数值明显上升,透射电子显微镜和选区电子衍射观察的结果也表明,材料经过剪切变形产生晶粒细化效应,细化的晶粒尺度已经达到超细晶材料晶粒尺度的范围。本专利技术的优点是克服了现有强塑性变形方法过程连续性和施加均匀变形量的问题。本专利技术首次利用圆环形试样内外表面的摩擦力之差作为动力,方法易行,装置简单,所需外力较小(MPa级),不仅可以在较小的压力下产生大塑性变形,而且变形量均匀可控。本专利技术所能够适用的材料类型,主要是各种金属材料及其合金,包括面心立方金属,如铝,铜等;体心立方金属,如铁等。附图说明图1为本专利技术处理圆环形试样示意图。图中所示为圆环试样的剪切方向。图2为本专利技术所使用的模具的示意图。图3为本专利技术剪切应变理论分析示意图。图4为经过本专利技术处理的圆环沿任取一条径向线段的显微硬度变化曲线图(旋转剪切角度为180°)。图5为经过本专利技术处理的圆环沿任取一条径向线段的显微硬度变化曲线图(旋转剪切角度为90°)。具体实施例方式以下结合附图和实施例对本专利技术的技术方案作进一步描述实施例在以本专利技术技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本专利技术的保护范围不限于下述的实施例。根据图1看出,本专利技术的剪切处理材料的方式材料在一定的压强下发生塑性变形,然后再通过模具的带动使之在内、外圆环面摩擦力的作用下扭转,从而产生剪切变形来处理材料的一种强塑性变形方法。根据图2看出,本专利技术所使用的模具包括底座,套筒和扭转螺母3个部分,所用的铝环在模具中所处的位置将圆环试样置于试样的底座的对应位置上,对模具以及试样进行必要的润滑处理,以减少摩擦阻力。然后装上套筒以及扭转螺母部分。对照图3,纯铝试样的圆环截面示意图。O是圆环的圆心,R是外圆半径,r是内圆半径,θ代表旋转剪切角。理论分析和剪切应变公式的推导都是基于理想的情况,包括忽略系统的摩擦阻力,以及内圆上的某一点A点在旋转剪切的过程中固定不移动。假设外圆上的B点在旋转剪切之后,移动到B’点,于是线段AB变形为弧线AB’;又假设整个剪切变形过程是均匀的,可以推得剪切应变的理论计算公式γ=θR/(R-r)(1)以及剪切应变速率γ’的计算公式γ’=ωR/(R-r) (2) 从公式(1),可以得出增加θ或者R的值,和减小(R-r)的值可以获得大的剪切应变。当样品尺寸固定的时候,应变的大小只与旋转角度θ相关。实施例步骤以及具体的试样等如下(1)试样准备准备所用的开口纯铝环。使用线切割机切出铝环,并用金相砂纸对其表面进行磨抛处理。加工实施例所用的上述模具,如图2所示。(2)实施过程将装配好的模具置于实验机的实验台上,利用该实验机施加的应力于套筒上表面。当压强达到一定数值的时候,停止加载并保持现有应力状态。使用器械对扭转螺母进行扭转,扭转一定角度后,停止扭转并卸载应力。取下底座上的圆环。(3)后处理将圆环进行冷镶样,冷镶样原料为618环氧树脂及其对应的促凝剂,并进行金相砂纸打磨和机械抛光处理,然后进行显微硬度测试。显微硬度测试条件为50g,饱载时间为45s,测试结果如图4所示。所述的模具是使用Cr12MoV工具钢。所述的开口圆环试样材料是1050工业纯铝。所述的开口圆环尺寸是内圆半径5mm,外圆半径8mm,厚度2mm,开口处由线切割机的Mo丝割出。例证实验(1)选取旋转剪切角度为180°,压强800MPa采用的显微硬度测试仪为HXS-1000A型显微硬度测试仪(深圳市兴威测量仪器有限公司产,数显分辨率0.03μm。)采用的透射电子显微镜为JOEL2010型透射电子显微镜(日本电子公司产,加速电压为200kV)实验开始时,开口的圆环试样,开口处直线十分明显。经过旋转剪切实验处理的圆环可以发现,初始实验时为圆环的开口AB直线成为曲线A’B’。观察得到试样的旋转剪切角θ约为180°。根据公式1,可算得剪切应变为8.4。对照图4是经过旋转剪切实验处理的圆环沿任取一条径向线段的显微硬度变化曲线图。显微硬度测试取点是沿着直径方向上任意选取一条直线段,所取测试点沿着该线段由内圆环向外直到外圆环。另外,所用铝环初始的显微硬度数值HV本文档来自技高网
...

【技术保护点】
一种制备超细晶材料的强塑性变形方法,其特征在于,采用包括底座、套筒和扭转螺母的模具,将开口圆环试样置于底座之上,装上套筒并压紧,然后装上扭转螺母;将已装有试样的模具置于平台上,用压力垂直作用于套筒上,当压力施加到设定数值,保持压力载荷,并扭动扭转螺母,从而使得试样在剪切压力的作用下产生均匀的塑性变形,试样旋转剪切的角度与扭转螺母的扭转角度相等。

【技术特征摘要】

【专利技术属性】
技术研发人员:汪明亮单爱党
申请(专利权)人:上海交通大学
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1