一种胍基化合物的应用制造技术

技术编号:14526094 阅读:37 留言:0更新日期:2017-02-02 05:09
本发明专利技术公开了一种如式I所示的胍基化合物或其药学上可接受的盐在制备治疗神经系统退行性疾病的药物中的应用;其中,所述R为氢、羧基或-C1~C5烷基-羧基。本发明专利技术的胍基化合物在过氧化氢所致新生大鼠海马神经细胞损伤的保护作用及对体外β-淀粉样蛋白聚集的抑制作用中效果显著,具有潜在的临床应用价值。

【技术实现步骤摘要】

本专利技术涉及一种胍基化合物的应用
技术介绍
阿尔茨海默症(Alzheimer'sdisease,AD)是最常见的神经系统退行性疾病,也是痴呆中最常见的病因,约占老年痴呆症总发病率的70%左右。临床上常见以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆表现为特征。流行病学资料表明目前,全球至少有3500万人患有AD,在65岁以上的老年人群中具有高达5%的发病率,且由于缺乏特异性的临床治疗方法,已成为老年人继脑卒中、恶性肿瘤、心脏病之后的第四大死因。老年痴呆症不仅危害着老年人的身心健康和生活质量,同时给家庭和社会带来了沉重的负担。由于老年痴呆与增龄密切相关,随着老年人口的增加以及人类寿命的延长,AD的发病率也随之增加,AD的预防与治疗已成为国内外研究的热点。AD的发病机制非常复杂,目前仍未完全阐明,临床发现AD患者脑中的标志性病理特征表现为在大脑皮层和海马出现神经原纤维缠结(neurofibrillarytangles,NT)和主要由β-淀粉样蛋白(amyloidβ-protein,Αβ)组成的老年斑。众多临床和基础研究也表明Αβ在脑内的广泛沉积和老年斑形成是AD发生与发展的早期必然因素,远早于NT及其他病理损害的发生。Aβ的聚集使其具有神经细胞毒性,可引起神经元细胞的退变、凋亡,在体外培养可引起神经元细胞死亡。因此Αβ异常聚集以及神经元细胞损伤是AD的主要发病机制,而阻止或抑制Aβ的聚集沉积以及对神经元细胞损伤的保护成为AD新的治疗靶点。目前针对AD的临床治疗药物主要为胆碱酯酶抑制剂,抗氧化药,脑循环改善剂,钙拮抗剂,防止Αβ沉积药,α-分泌酶激动剂,β-分泌酶抑制剂,γ-分泌酶抑制剂等,但这些药物均存在一定的毒副作用和使用限制,例如合成困难、成本高等,因此从天然产物和中草药中发掘具有抗老年痴呆活性的药物逐渐成为研究热点。近年来,很多含有胍基的天然产物从自然界生物特别是海洋生物中相继被分离出来,并发现许多含有胍基化合物具有抗炎症作用、抗组胺作用、降压作用、降血糖作用等生物活性,而且胍基对其活性起到重要作用。而发展出一种对治疗阿尔茨海默症有潜在药用价值的胍基化合物,是本领域研究的难点。
技术实现思路
本专利技术要解决的技术问题是为了克服现有技术中阿尔茨海默症类药物或抑制剂均存在一定的毒副作用和使用限制,例如合成困难、成本高等缺陷,而提供了一种胍基化合物的应用。本专利技术的胍基化合物可从石菖蒲根茎中分离得到、来源广泛、成本低廉。并且本专利技术的胍基化合物在过氧化氢所致新生大鼠海马神经细胞损伤的保护作用及对体外β-淀粉样蛋白聚集的抑制作用中效果显著,具有潜在的临床应用价值。本专利技术提供了一种如式I所示的胍基化合物或其药学上可接受的盐在制备治疗神经系统退行性疾病的药物中的应用;其中,所述R为氢、羧基或-C1~C5烷基-羧基。较佳地,所述-C1~C5烷基-羧基为-C1~C3烷基-羧基。较佳地,所述-C1~C3烷基-羧基为-甲基-羧基、-乙基-羧基或-丙基-羧基。较佳地,所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物与无机酸或有机酸形成的盐;或者,R为羧基或-C1~C5烷基-羧基时,所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物的羧酸钠盐、羧酸钾盐或羧酸钙盐;或者,R为羧基或-C1~C5烷基-羧基时,所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物与无机碱或有机碱形成的盐。较佳地,所述无机酸为盐酸或硝酸。较佳地,所述有机酸为苹果酸、天门冬氨酸、抗坏血酸、琥珀酸、丙酮酸、富马酸、葡糖酸、α-酮戊二酸、草酸、焦谷氨酸、3-烟酸、乳酸、柠檬酸、马来酸、硫酸、乙酸、甲酸、2-羟基苯甲酸、牛磺酸、甲硫氨酸或硫辛酸。较佳地,所述有机碱为L-肉毒碱、乙酰基-L-肉毒碱、甜菜碱或胆碱。较佳地,所述神经系统退行性疾病为神经元细胞损伤所致的神经系统退行性疾病。较佳地,所述神经元细胞损伤为化学性神经元细胞损伤。较佳地,所述化学性神经元细胞损伤为氧化应激因素所致神经元细胞损伤和/或β-淀粉样蛋白异常聚集所致神经元细胞损伤。本专利技术中,所述氧化应激因素所致神经元细胞损伤是指由于人体内的活性氧自由基和活性氮自由基的产生和清除失衡引起的神经元细胞损伤,而根据本领域常识,通常其中活性氧自由基的量占到了这两种活性自由基总量中的95%以上。因此,较佳地,所述氧化应激因素为人体内的活性氧自由基和/或人体内的活性氮自由基。所述人体内的活性氧自由基可为本领域常规的各种活性氧自由基。较佳地,所述人体内的活性氧自由基为O2-、H2O2和·OH中的一种或多种。其中,所述·OH指羟自由基。所述O2-为超氧阴离子。所述人体内的活性氮自由基可为本领域常规的各种活性氮自由基。较佳地,所述人体内的活性氮自由基为一氧化氮、NO-(氮氧阴离子)、RSNO(亚硝基硫醇)和OONO(过氧亚硝酸阴离子)中的一种或多种。本专利技术的专利技术人想要说明的是,本领域中,体外实验模拟体内的氧化应激因素所致神经元细胞损伤通常采用过氧化氢环境下诱导神经元细胞损伤的方法。这是本领域常见的一种体外模拟方法,并且因为所有的氧化应激因素所致神经元细胞损伤涉及的反应原理均为氧化反应及抗氧化反应,因此该模拟方法具有非常强的代表性,在本领域来说,作为体外模拟实验,能够起到代表众多人体内氧化应激因素的作用。较佳地,所述神经元细胞为海马神经元细胞。较佳地,所述神经系统退行性疾病为阿尔茨海默症。在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本专利技术各较佳实例。本专利技术所用试剂和原料均市售可得。本专利技术的积极进步效果在于:本专利技术的胍基化合物在过氧化氢所致新生大鼠海马神经细胞损伤的保护作用及对体外β-淀粉样蛋白聚集的抑制作用中效果显著,具有潜在的临床应用价值。具体实施方式下面通过实施例的方式进一步说明本专利技术,但并不因此将本专利技术限制在所述实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。实施例1将胍进行对100μM过氧化氢所致新生大鼠海马神经细胞损伤的保护作用的效果检测。具体操作为:分离培养在24h内出生的大鼠脑内海马区域的神经细胞,以1x106/ml的细胞密度培养7天致生长最佳状态。随后将生长良好的海马神经细胞分为空白组、模型组和待测药物组(n=4,即4复孔)。空白组及模型组给予空白DMEM培养基,给药组给予含不同终浓度待测药物的培养基。2h后,加入含H2O2的DMEM培养基(终浓度为100μM)损伤24h后,MTT法测定细胞存活率。结果见表1所示。表1、胍对100μM过氧化氢所致新生大鼠海马神经细胞损伤的保护作用其中,n=4表示每个数据是由四次重复实验得到的平均数据。其中,*表示单因素方差分析中,P<0.05,即与模型组相比差异达显著水平;**表示单因素方差分析中,P<0.01,即与模型组相比差异达极显著水平。从表1可见,当胍在药物终浓度为1mg/L时,细胞存活率结果与模型组相比差异达显著水平;当胍在药物终浓度为10μg/L,也有一定的提高细胞存活率的作用。本实施例的效果水平提示,该化合物本文档来自技高网
...

【技术保护点】
一种如式I所示的胍基化合物或其药学上可接受的盐在制备治疗神经系统退行性疾病的药物中的应用;其中,所述R为氢、羧基或‑C1~C5烷基‑羧基。

【技术特征摘要】
1.一种如式I所示的胍基化合物或其药学上可接受的盐在制备治疗神经系统退行性疾病的药物中的应用;其中,所述R为氢、羧基或-C1~C5烷基-羧基。2.如权利要求1所述应用,其特征在于:所述-C1~C5烷基-羧基为-C1~C3烷基-羧基。3.如权利要求2所述应用,其特征在于:所述-C1~C3烷基-羧基为-甲基-羧基、-乙基-羧基或-丙基-羧基。4.如权利要求1所述应用,其特征在于:所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物与无机酸或有机酸形成的盐;或者,R为羧基或-C1~C5烷基-羧基时,所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物的羧酸钠盐、羧酸钾盐或羧酸钙盐;或者,R为羧基或-C1~C5烷基-羧基时,所述如式I所示的胍基化合物的药学上可接受的盐为如式I所示的胍基化合物与无机碱或有机碱形成的盐。5.如权利要求4所述应用,其特征在于:所述无机酸为盐酸或硝酸;所述有机酸为苹果酸、天门冬氨酸、抗坏血酸、琥珀酸、丙酮酸、富马酸、葡糖酸、α-酮戊二酸、草...

【专利技术属性】
技术研发人员:董文心顾丰华陈嘉刘翔吴彤张美璇李默影
申请(专利权)人:上海医药工业研究院中国医药工业研究总院
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1