加氢裂化催化剂载体的制法制造技术

技术编号:11436835 阅读:48 留言:0更新日期:2015-05-08 14:35
本发明专利技术公开了一种加氢裂化催化剂载体的制备方法。该方法包括:将小晶粒Y型分子筛、无定形硅铝和用氧化铝制成的粘合剂混合,挤条成型,然后经干燥和焙烧,制成载体。该方法是将硅铝比较高,结晶度高,稳定性好的NaY型分子筛原料,依次经过碱洗、铵交换、水热处理和用酸与铵盐的混合溶液处理后,所得到的小晶粒Y型分子筛在获得较高的SiO2/A12O3摩尔比的同时,二次孔所占的比例较高,而且保持了Y型分子筛的稳定性,分子筛具有较高的比表面积和较高的结晶度。本发明专利技术加氢裂化催化剂载体用于轻油型加氢裂化催化剂时,可使催化剂具有很好的活性、重石脑油选择性和优异的产品性质。

【技术实现步骤摘要】
加氢裂化催化剂载体的制法
本专利技术涉及一种加氢裂化催化剂载体的制备方法,更具体地说是一种含小晶粒Y型分子筛的加氢裂化催化剂载体的制备方法。
技术介绍
加氢裂化技术是原油二次加工、重油轻质化的重要手段之一,由于它对原料的适应性强、操作和产品方案都十分灵活以及产品质量好等特点,已成为生产优质轻质油品及解决化工原料来源的重要途径。加氢裂化技术的关键是催化剂。要求新开发的催化剂具有更高的活性、选择性,以提高装置对原料的适应性和加工方案的灵活性,多产高效益组分,降低能耗,增加效益。载体是催化剂的重要组成部分,不但为金属活性组分提供分散场所,同时载体本身也参与反应,与其它活性组分一起协同完成整个催化反应,加氢裂化催化剂是一种双功能催化剂,它同时含有酸性组分和加氢组分。加氢活性一般选自元素周期表中的ⅥB族和第Ⅷ族金属提供;而其酸性组分主要是由沸石及无机氧化物提供,大部分是以氧化铝或无定形硅铝为载体,配以一定量的分子筛。而此类催化剂中起裂化作用的关键组分通常为Y分子筛,Y分子筛性能的好坏,直接影响催化剂的性能和产品质量。Y型分子筛是目前在重油裂化领域中能最为普遍的裂化活性组分,晶粒一般为1000nm左右,其晶粒较大,孔道相对较长,扩散阻力大,大分子难以进入孔道内部进行反应,反应后产物也较难扩散出来,所以其裂化活性及目的产品的选择性受到了制约。与常规Y型分子筛相比,小晶粒Y型分子筛有更大的外表面积和更多外表面活性中心,有利于提高大分子烃裂化能力,因而具有更为优越的催化反应性能。同时,减小Y型分子筛晶粒尺寸还可以提高内表面活性位利用率。一般来说,反应物分子在分子筛内孔孔道中的扩散称为晶内扩散。要使分子筛内表面全部被用来进行催化转化,必须使晶内扩散速率大于内孔催化转化速率。缩短扩散路径是最好的方法。克服晶内扩散限制的一个有效途径是减小分子筛晶粒尺寸。这不但可以增加分子筛晶粒的外表面积,而且同时缩短了扩散距离。EP0204236对小晶粒NaY分子筛和大晶粒NaY分子筛进行了比较,结果表明,前者对重油催化裂化有较高的活性和较好的选择性。小晶粒NaY分子筛是不具备酸性的,需要进行改性处理,以满足裂化催化剂的性能要求。CNl382632A公开了一种小晶粒Y型沸石的超稳化方法,该方法是用四氯化硅的干燥气体与小晶粒NaY沸石接触,洗涤后得到的,由于其原料自身的热和水热稳定性就较差,同时该专利技术方法是采用气相脱铝补硅的方式处理分子筛,这使得产品的热和水热稳定性更差,活性低。尤其是对热稳定性和水热稳定性较差的小晶粒NaY沸石,分子筛中的硅铝骨架结构稳定性较差,在改性过程中很容易造成骨架铝的脱除,同时也有一部分骨架硅也随着脱除,很容易造成部分骨架出现坍塌的现象,使得产品的结晶保留度较低,分子筛的活性不高。CN200910188140.5公开了一种加氢裂化催化剂及其制备方法。该催化剂包括加氢活性金属组分和小晶粒Y分子筛、无定形硅铝和氧化铝组成的载体,其中所述小晶粒Y型分子筛为采用水热处理后的小晶粒Y型分子筛。所用原料小晶粒NaY分子筛为CN101722023A中公开的方法制备的,即SiO2/Al2O3摩尔比为4.0~6.0,平均粒径在100~700nm,依次通过后续改性即铵交换、六氟硅酸铵脱铝补硅、水热处理、铝盐和酸的混合水溶液处理,得到小晶粒Y分子筛。该方法中,需先对原料用六氟硅酸铵脱铝补硅处理后,再进行水热处理等处理,这样才能减少分子筛的骨架结构的坍塌,提高分子筛的结晶保留度,但该方法由于先用六氟硅酸铵脱铝补硅处理后,由于发生硅铝同晶取代,分子筛硅氧铝结构比较完整,再进行水热处理,形成的二次孔少,二次孔所占比例低,作为催化剂分子筛组分,目的产品选择性低。现有方法小晶粒NaY型分子筛在制备过程中,硅和铝易流失,硅利用率低,并且硅、铝分布不均一,容易出现团聚,因此现有方法仍然无法制备硅铝比高,且热稳定性和水热稳定性又好的小晶粒NaY型分子筛。经过后续改性,不能得到结构完整,结晶度高且具有较多二次孔的小晶粒Y型分子筛,作为催化剂的裂解组分,目的产品收率低。
技术实现思路
针对现有技术中的不足之处,本专利技术提供了一种催化性能好的加氢裂化催化剂载体的制备方法。该加氢裂化催化剂载体采用提供了一种硅铝比较高、高结晶度、二次孔多、大比表面积的小晶粒Y型分子筛作为酸性组分,所制备的加氢裂化催化剂具有较高的活性,重石脑油选择性和优异的产品性质。本专利技术加氢裂化催化剂载体的制备方法,包括:将小晶粒Y型分子筛、无定形硅铝和用氧化铝制成的粘合剂混合,挤条成型,然后经干燥和焙烧制成载体;其中所述的小晶粒Y分子筛,包括如下制备步骤:(1)小晶粒NaY型分子筛的制备;(2)将小晶粒NaY用含碱溶液处理;(3)将步骤(2)得到的小晶粒NaY型分子筛制备成Na2O含量≤2.5wt%的小晶粒NH4NaY;(4)对步骤(3)得到小晶粒NH4NaY分子筛进行水热处理;(5)将步骤(4)得到的分子筛用含NH4+和H+的混合溶液处理,经洗涤和干燥,得到小晶粒Y型分子筛;本专利技术方法中步骤(1)中小晶粒NaY型分子筛的制备方法,包括:A、制备导向剂:将硅源、铝源、碱源及水按照如下配比投料:(6~30)Na2O:Al2O3:(6~30)SiO2:(100~460)H2O,搅拌均匀后,将混合物在0~20℃下搅拌陈化0.5~24小时制得导向剂;B、采用酸碱沉淀法制备无定形硅铝前驱物,以无定形硅铝前驱物的干基的重量为基准,硅以二氧化硅计的含量为40wt%~75wt%,优选为55wt%~70wt%;其制备过程包括酸碱中和成胶,老化,其中硅引入反应体系的方法是在含铝物料中和成胶前和/或成胶过程中引入部分含硅物料,剩余部分含硅物料是在含铝物料中和成胶后且在老化前引入;C、制备硅铝凝胶按(0.5~6)Na2O:Al2O3:(7~11)SiO2:(100~460)H2O的总投料摩尔比,在0~40℃快速搅拌的条件下向步骤(2)所得的无定形硅铝前驱物中加入水、硅源、导向剂和碱源,并控制pH值为9.5~12.0,均匀搅拌,得到硅铝凝胶;其中导向剂加入量占硅铝凝胶重量的1%~20%,D、步骤C所得的反应混合物经两步动态晶化,再经过滤,洗涤,干燥,得到小晶粒NaY分子筛。本专利技术中,步骤A和C中,硅源、碱源可采用常规制备分子筛的硅源和碱源,本专利技术中优选硅源采用硅酸钠,碱源采用氢氧化钠。步骤A中,铝源可采用常规制备分子筛的铝源,本专利技术中优选采用偏铝酸钠。本专利技术中,步骤B优选在含铝物料中和成胶后且在老化前引入的硅以二氧化硅计占无定形硅铝前驱物中的硅以二氧化硅计的5wt%~85wt%,优选为30wt%~70wt%。本专利技术中,步骤B的无定形硅铝前驱物的制备方法采用常规的酸碱沉淀法,其中包括酸碱中和成胶,老化,其中酸碱中和成胶过程一般是酸性物料和碱性物料的中和反应过程。中和成胶过程可以采用酸性物料或碱性物料连续中和滴定的方式,也可以采用酸性物料和碱性物料并流中和的方式。其中硅引入反应体系中的方法如下:在含铝物料中和成胶前和/或成胶过程中引入部分含硅物料,剩余部分含硅物料是在含铝物料中和成胶后且在老化前引入。硅在含铝物料中和成胶前和/或成胶过程中可以是根据不同的含硅物料的性质与酸性物料或碱性物料混合后再进行中和成胶(比如含硅物本文档来自技高网
...

【技术保护点】
一种加氢裂化催化剂载体的制备方法,包括:将小晶粒Y型分子筛、无定形硅铝和用氧化铝制成的粘合剂混合,挤条成型,然后经干燥和焙烧,制成载体;所述小晶粒Y型分子筛的制备方法,包括:(1)小晶粒NaY型分子筛的制备;(2)将小晶粒NaY用含碱溶液处理;(3)将步骤(2)得到的小晶粒NaY型分子筛制备成Na2O含量≤2.5wt%的小晶粒NH4NaY;(4)对步骤(3)得到小晶粒NH4NaY分子筛进行水热处理;(5) 将步骤(4)得到的分子筛用含NH4+和H+的混合溶液处理,经洗涤和干燥,得到小晶粒Y型分子筛;其中步骤(1)中小晶粒NaY型分子筛的制备方法,包括:  A、制备导向剂:将硅源、铝源、碱源及水按照如下配比投料:(6~30)Na2O:Al2O3:(6~30)SiO2:(100~460)H2O,搅拌均匀后,将混合物在0~20℃下搅拌陈化0.5~24小时制得导向剂; B、采用酸碱沉淀法制备无定形硅铝前驱物,以无定形硅铝前驱物的干基的重量为基准,硅以二氧化硅计的含量为40wt%~75wt%;其制备过程包括酸碱中和成胶,老化,其中硅引入反应体系的方法是在含铝物料中和成胶前和/或成胶过程中引入部分含硅物料,剩余部分含硅物料是在含铝物料中和成胶后且在老化前引入; C、制备硅铝凝胶:按(0.5~6)Na2O:Al2O3:(7~11)SiO2:(100~460)H2O的总投料摩尔比,在0~40℃快速搅拌的条件下向步骤B所得的无定形硅铝前驱物中加入水、硅源、导向剂和碱源,并控制pH值为9.5~12.0,均匀搅拌,得到硅铝凝胶;其中导向剂加入量占硅铝凝胶重量的1%~20%,  D、步骤C所得的反应混合物经两步动态晶化,再经过滤,洗涤,干燥,得到小晶粒NaY分子筛。...

【技术特征摘要】
1.一种加氢裂化催化剂载体的制备方法,包括:将小晶粒Y型分子筛、无定形硅铝和用氧化铝制成的粘合剂混合,挤条成型,然后经干燥和焙烧,制成载体;所述小晶粒Y型分子筛的制备方法,包括:(1)小晶粒NaY型分子筛的制备;(2)将小晶粒NaY用含碱溶液处理;(3)将步骤(2)得到的小晶粒NaY型分子筛制备成Na2O含量≤2.5wt%的小晶粒NH4NaY;(4)对步骤(3)得到小晶粒NH4NaY分子筛进行水热处理;(5)将步骤(4)得到的分子筛用含NH4+和H+的混合溶液处理,经洗涤和干燥,得到小晶粒Y型分子筛;其中步骤(1)中小晶粒NaY型分子筛的制备方法,包括:A、制备导向剂:将硅源、铝源、碱源及水按照如下配比投料:(6~30)Na2O:Al2O3:(6~30)SiO2:(100~460)H2O,搅拌均匀后,将混合物在0~20℃下搅拌陈化0.5~24小时制得导向剂;B、采用酸碱沉淀法制备无定形硅铝前驱物,以无定形硅铝前驱物的干基的重量为基准,硅以二氧化硅计的含量为40wt%~75wt%;其制备过程包括酸碱中和成胶,老化,其中硅引入反应体系的方法是在含铝物料中和成胶前和/或成胶过程中引入部分含硅物料,剩余部分含硅物料是在含铝物料中和成胶后且在老化前引入;C、制备硅铝凝胶:按(0.5~6)Na2O:Al2O3:(7~11)SiO2:(100~460)H2O的总投料摩尔比,在0~40℃快速搅拌的条件下向步骤B所得的无定形硅铝前驱物中加入水、硅源、导向剂和碱源,并控制pH值为9.5~12.0,均匀搅拌,得到硅铝凝胶;其中导向剂加入量占硅铝凝胶重量的1%~20%,D、步骤C所得的反应混合物经两步动态晶化,再经过滤,洗涤,干燥,得到小晶粒NaY分子筛。2.按照权利要求1所述的方法,其特征在于步骤B中,无定形硅铝前驱物,以无定形硅铝前驱物的干基的重量为基准,硅以二氧化硅计的含量为55wt%~70wt%。3.按照权利要求1所述的方法,其特征在于步骤B中,无定形硅铝前驱物的制备过程中,在含铝物料中和成胶后且在老化前引入的硅以二氧化硅计占无定形硅铝前驱物中的硅以二氧化硅计的5wt%~85wt%。4.按照权利要求1所述的方法,其特征在于步骤B中,无定形硅铝前驱物的制备过程中,在含铝物料中和成胶后且在老化前引入的硅以二氧化硅计占无定形硅铝前驱物中的硅以二氧化硅计的30wt%~70wt%。5.按照权利要求1所述的方法,其特征在于步骤A和C中,硅源、碱源分别为硅酸钠和氢氧化钠;步骤A中,铝源选自偏铝酸钠。6.按照权利要求1所述的方法,其特征在于步骤B中,含铝物料为Al2(SO4)3、AlCl3、Al(NO3)3和NaAlO2中的一种或几种,含硅物料为水玻璃、硅溶胶和有机含硅化合物中的一种或几种,其中有机含硅化合物为硅醇、硅醚和硅氧烷中的一种或几种,沉淀剂为酸性沉淀剂或碱性沉淀剂,其中碱性沉淀剂为氢氧化钠、氨水、碳酸钠、碳酸氢钠中的一种或几种,酸性沉淀剂二氧化碳或硝酸。7.按照权利要求1所述的方法,其特征在于步骤B采用的酸碱沉淀法中,酸碱中和成胶过程是酸性物料和碱性物料的中和反应过程,中和成胶过程采用酸性物料或碱性物料连续中和滴定的方式,或者采用酸性物料和碱性物料并流中和的方式。8.按照权利要求7所述的方法,其特征在于步骤B中,含硅物料在含铝物料中和成胶前和/或成胶过程中引入,是根据不同的含硅物料的性质与酸性物料或碱性物料混合后再进行中和成胶,或者将含硅物料在含铝物料中和...

【专利技术属性】
技术研发人员:孙晓艳樊宏飞王占宇
申请(专利权)人:中国石油化工股份有限公司中国石油化工股份有限公司抚顺石油化工研究院
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1