纳米结构阵列材料及其制备方法技术

技术编号:10597076 阅读:246 留言:0更新日期:2014-10-30 09:58
本发明专利技术纳米结构阵列材料及其制备方法,具体指一种耐高温、抗腐蚀、拥有纳米线阵列的宽禁带半导体4H晶型碳化硅材料及其制备方法,涉及纳米结构阵列材料技术领域。本发明专利技术包括不同晶型的SiC纳米线,如3C、4H和6H晶型的SiC纳米线,如基于n型重掺杂4H-SiC衬底,通过选择适当的脉冲频率和停留时间对两极施加恒脉冲电流得到均匀介孔阵列,然后适当增大电流正向占宽比与电流密度使得底部孔与衬底脱离,通过剥离手段得到该纳米线阵列。其具有简单可靠,重复率高,纳米线阵列密度高,节省制备成本等优点。在为电力电子和航天航空领域,应用高载流子迁移率,热导率,抗腐蚀,耐高压等优点的碳化硅产品,提供坚实的技术物质基础。

【技术实现步骤摘要】
纳米结构阵列材料及其制备方法
本专利技术涉及纳米结构阵列材料
,具体指一种耐高温、抗腐蚀、拥有纳米线阵列的宽禁带半导体4H晶型碳化硅材料及其制备方法。
技术介绍
作为第三代半导体的碳化硅材料,具备高载流子迁移率,热导率,抗腐蚀,耐高压等多项优于第一代半导体的优势,同样纳米结构的碳化硅也具备以上优点,使其有望挑战第一代纳米结构硅材料在传感器、场发射器件及储能器件上的地位。目前,3C-SiC与6H-SiC的纳米线可以通过气相法、液相法、固相法制备得到,但是这类晶型的碳化硅在多数性能上不及4H-SiC,而且通过此类方法难以制得4H晶型、高质量、碳化硅纳米线。所以探索制备4H-SiC纳米线的方法具有重要的意义。此类方法亦适用于其它材料纳米结构阵列材料的制备,尤其是不同晶型的SiC纳米线的制备,如3C、4H和6H晶型的SiC纳米线。
技术实现思路
本专利技术的目的在于克服现有技术中4H晶型SiC纳米线阵列难以制备的现状,提出了一种通过电化学刻蚀和简易剥离手段相结合的方法得到4H晶型SiC纳米线阵列。此方法同样适用于其它材料的纳米结构阵列材料的制备。本专利技术一种纳米结构阵列材料,其特点,包含经纳米结构调制再剥离手段得到纳米材料结构阵列。如一种4H晶型SiC纳米线阵列材料,其特点,包含基于n型重掺杂4H-SiC衬底,厚度为300~500μm,双面抛光,经电化学刻蚀制备得在C面剥离得到的4H晶型SiC纳米线阵列。其中,所述纳米线线径范围为10-20nm,纳米长度范围为3-5μm,单根纳米线结构为葫芦状纳米线结构,每结葫芦结构纵向长度为5nm,纳米线阵列面积为1cm2的圆形阵列。所述n型重掺杂4H-SiC晶圆片是经过PVT法生长的晶锭经定向、切割、双面抛光,双面CMP抛光得到的工业化晶片,面积为100cm2。所述n型重掺杂4H-SiC衬底厚度为320μm,最佳纳米线线径在15nm左右,每结葫芦状部分的纳米线长度在5nm左右,纳米线长度约为5μm,刻蚀面积约1cm2圆形刻蚀面。本专利技术纳米阵列材料的制备方法,实施例包括如下步骤:步骤1,准备重掺杂n型4H-SiC样品。步骤2,将双导铜箔裁剪成面积略小于样品的方形,然后均匀粘附于样品Si面。将样品固定于刻蚀槽体阳极位置,将铂网阴极至于阳极正上方2cm处。配置氢氟酸49%:乙醇99%:双氧水30%=3:6:1体积比的混合液作为电解液。设定频率为2500Hz的正向电流,正向电流100%,电流密度为40mA/cm2,正向占宽比为50%的恒流脉冲,开启电源,时间为3min,再将正向占宽比提升至100%或者将电流密度提升至80mA/cm2,时间为30s。步骤3,取出样品将其浸泡于乙醇99%溶液中2min,然后放置于空气待乙醇完全挥发,通过剥离手段剥离表面薄层,本实施例采用双导铜箔来剥离该层,即获得所述的4H晶型SiC纳米线阵列。如上所述,本专利技术一种纳米结构阵列材料的制备方法,如基于n型重掺杂4H-SiC衬底纳米线阵列的制备方法,通过选择适当的脉冲频率和停留时间对两极施加恒脉冲电流得到均匀介孔阵列,然后适当增大电流正向占宽比与电流密度使得底部孔与衬底脱离,孔壁即为纳米线,再通过剥离手段得到该纳米线阵列。该材料的特点相比较以往制备获得的材料特点而言,具有纳米线阵列密度高,纳米线晶型为4H晶型等,该阵列制备工艺相比较以往的制备工艺而言,具有简单可靠,重复率高等优点。对于其高性能衍生器件的制备带来了便利。具体实施方式以下结合实施例对本专利技术作进一步详细描述本专利技术实施例所述的一种4H晶型SiC纳米线的制备流程,包括以下步骤:步骤1,准备重掺杂n型4H-SiC预刻蚀样品。所述样品为晶圆,尺寸为100cm2,偏4°切割,双面抛光,由严格半导体工艺清洗后得到并经预刻蚀样品由晶圆片切割成1.2cm×1.2cm方形片,再经过体积比为1:1的氢氟酸(49%)和乙醇(99%)溶液浸泡除去表面氧化层。步骤2,将双导铜箔裁剪成面积为1cm2方形,然后均匀粘附于样品Si面。将样品固定于刻蚀槽体阳极位置,将铂网电极(阴极)至于阳极正上方2cm处。配置氢氟酸(49%):乙醇(99%):双氧水(30%)=3:6:1体积比混合液作为电解液。设定频率为2500Hz的正向电流,正向电流100%,电流密度为40mA/cm2,正向占宽比为50%的恒流脉冲,开启电源,时间为3min,再将正向占宽比提升至100%或者将电流密度提升至80mA/cm2,时间为30s。步骤3,取出样品将其浸泡于乙醇99%溶液中2min,然后放置于空气待乙醇完全挥发,通过剥离手段剥离表面薄层,本实验利用双导铜箔来剥离该层,即获得所述的4H晶型SiC纳米线阵列。综上所述,本专利技术一种纳米结构材料阵列的制备方法,具体指4H晶型碳化硅纳米线阵列材料及其制备方法,克服了现有技术中4H晶型SiC纳米线难以制备与纳米线阵列密度低的问题,该阵列制备方法简单可靠。制备工艺可重复性强,成品率高,对于其高性能衍生器件的制备带来了便利。其比较现有气相法、液相法、固相法,简化了制备器具,节省制备成本。在为电力电子和航天航空领域,应用高载流子迁移率,热导率,抗腐蚀,耐高压等优点的第三代半导体的碳化硅产品,提供坚实的技术物质基础。本文档来自技高网...

【技术保护点】
一种纳米结构阵列材料,其特征在于,包含不同晶型的SiC纳米线,如3C、4H和6H晶型的SiC纳米线,如基于n型重掺杂4H‑SiC衬底,厚度为300~500μm,双面抛光,经电化学刻蚀法、剥离手段得到的4H晶型SiC纳米线阵列。

【技术特征摘要】
1.一种纳米结构阵列材料的制备方法,其特征在于,包括如下步骤:步骤1,清洗n型重掺杂4H-SiC衬底氧化层并切割处理;步骤2,将双导铜箔裁剪成面积为1cm2的方形,然后均匀粘附于n型重掺杂4H-SiC衬底Si面,将n型重掺杂4H-SiC衬底,固定于刻蚀槽体阳极位置,将铂网阴极至于阳极正上方2cm处;配置氢氟酸49%:乙醇99%:双氧水30%=3:6:1体积比的混合液作为电解液;设定频率为2500Hz的正向电流,正向电流100%,电流密度为40mA/cm2,正向占宽比为50%的恒流脉冲,开启电源,时间为3min,再将正向占宽比提升至100%或者将电流密度提升至80mA/cm2,时间为30s;步骤3,取出n型重掺杂4H-SiC衬底,将其浸泡于乙醇99%溶液中2min,然后放置...

【专利技术属性】
技术研发人员:谈嘉慧陈之战石旺舟何鸿张永平
申请(专利权)人:上海师范大学
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1