当前位置: 首页 > 专利查询>浙江大学专利>正文

一种集成于电力电子芯片内的时钟发生器制造技术

技术编号:9860830 阅读:162 留言:0更新日期:2014-04-02 19:46
本发明专利技术时钟信号发生器以电网频率作为参考基准,通过信号同步模采集电网的电压信号或电流信号,并经过一系列转换处理,形成基准脉冲,频率误差检测与补偿电路根据基准脉冲与时钟信号的频率关系对时钟信号的频率进行修调,使时钟发生器输出的时钟信号频率调整到目标频率。该时钟发生器有利于提高电力电子芯片的时钟精度、降低工艺离散性,解决了电力电子领域集成电路片上集成时钟输出频率离散的问题,提高了电力电子芯片参数的一致性,且引入的额外硬件开销较小,结构简单,容易实现,有利于降低电力电子芯片制造成本。

【技术实现步骤摘要】
一种集成于电力电子芯片内的时钟发生器
本专利技术涉及集成电路领域,尤其涉及一种集成于电力电子芯片内的时钟发生器。
技术介绍
精确时钟源已经成为如今大多数电子电路(基本所有数字电路和某些模拟电路,如开关电容电路)不可或缺的一部分,在电力电子领域中也不例外,在涉及到诸如移相、延时等操作时,时钟电路的准确度、集成度和可靠性越来越受到工业界和学术界的广泛关注。在电力电子领域中,一般有两种方法获得精确的时钟源,一种是现在广泛应用的晶体或陶瓷振荡器,实践已经证明这类振荡器具有极高的准确度和稳定性,但是由于它们以机械方式工作,因而容易磨损,在物理冲击下可能造成实际输出频率与设定频率(即目标频率)存在一定的误差,另外,在尺寸受限的设计领域中,晶体或陶瓷振荡器较大的封装尺寸也给设计带来了挑战。另外一种实现方案是使用锁相环对输入电网频率信号进行同步,在芯片内部对电网频率信号进行倍频,使得芯片内部工作时钟锁定在电网频率,这种方法的缺陷是电路规模较大,复杂度较高,这使得应用的成本较高,稳定性和可靠性下降。一种比较好的可替代方案是采用片上集成振荡器(指能够集成于芯片内的振荡器),可以片上集成的振荡器有LC振荡器、RC振荡器和环形振荡器等。这类集成振荡器的实现方式简单,在标准CMOS工艺下很容易实现,因而避免了片外元器件的使用,这使得它们具有较高的集成度和可靠性。但是由于标准CMOS工艺提供的元器件(电阻和电容等)参数的工艺离散都比较大,导致了片上振荡器输出频率离散较大,例如在典型CMOS工艺下RC振荡器输出频率离散,甚至可以达到25%(即多个芯片中最大输出频率和最小输出频率均与目标频率相差25%)。针对制造工艺离散带来的成品率下降问题,工业界广泛采用的手段是修调技术,其中激光修调法和熔丝修调法是两种主要的修调方法。由于两种方法都需要在芯片封装之前加入一道额外的修调工序,这无疑会增加芯片的制造成本和时间成本。针对已有修调技术存在的上述缺点,目前已有研究开始着力于从集成电路设计层面解决片上集成振荡器输出频率离散问题,如文献Y.Tokunaga et al.,“An on-chipCMOS relaxation oscillator with voltage averaging feedback,,’IEEE Journal ofSolid-State Circuits, vol.45,n0.6,pp.1150-1158,2010.利用电压反馈的方式实现了一种抗工艺离散的CMOS张弛振荡器的设计,文献F.Sebastianoj L.Breemsj K.Makinwaj S.Dragoj D.Leenaertsj andB.Nautaj 66k low-voltage mobility-based frequency referenceforcrystal-less ULP radios,,,IEEE J.Solid-State Circuits, vol.44, n0.7, pp.2002 -2009,Jul.2009.给出了一种基于迀移率的片上集成振荡器的设计,然而上述方法也仅在一定程度上降低了片上振荡器的输出频率离散,例如基于迀移率的设计在不修调的情况下输出频率尚散仍达到了 ±6%。
技术实现思路
针对现有的电力电子应用领域芯片片内集成振荡器输出频率随制造工艺涨落离散较大的问题,本专利技术提供了一种电力电子芯片集成时钟发生器,该电力电子芯片集成时钟发生器时钟精度高、离散性低。—种集成于电力电子芯片内的时钟发生器,包括:信号同步模块,用于采集电网频率,并产生基准脉冲;待修调振荡单元,用于产生并输出时钟信号;频率误差检测与补偿电路,用于根据基准脉冲和时钟信号的频率向待修调振荡单元发出相应的修调信号,控制待修调振荡单元对输出时钟信号进行频率修调。各国电力行业都对电力系统供电频率的允许偏差进行了限定,即使在电力系统非正常状况下,供电频率允许偏差也较小。因此以电网频率为时钟基准进行频率修调得到的时钟频率理论上可以达到较高的精度,这足以满足大多数应用对工作时钟频率准确度的要求。如我国电力工业部1996发布施行的《供电营业规则》第五十三条规定,在电力系统正常状况下,供电频率的允许偏差为:(a)电网装机容量在300万千瓦及以上的,为±0.2赫兹;(b)电网装机容量在300万千瓦以下的,为±0.5赫兹。在电力系统非正常状况下,供电频率允许偏差不应超过±1赫兹。从该规定可以得到,在正常状况下,电网频率的最大离散为±1%。因此以电网频率为时钟基准进行频率修调能得到的时钟频率理论上可以达到±1%的精度,这足以满足大多数应用对工作时钟频率准确度的要求。本专利技术中通过信号同步模块采集电网的电压信号或电流信号,并经过一系列转换处理,将采集得到的正弦波信号(电网的电压信号和电流信号均为正弦波信号)转化方波信号作为基准脉冲,该方波信号的幅值取决于电力电子芯片的工作电压。由于电网电压一般较大,超过电力电子芯片的承受能力,因此一般采集电压信号之前,需根据电力电子芯片的工作电压设置降压模块,将电网电压降低至适应电力电子芯片工作电压之内。该基准脉冲的频率与电网频率相同,不同国家的电网频率会有所不同,在我国该频率为50Hz。本专利技术的集成于电力电子芯片内的时钟发生器,以电网频率作为基准频率(即作为基准脉冲),频率误差检测与补偿电路根据基准脉冲与时钟信号的频率关系对时钟信号的频率进行修调,使时钟发生器能够稳定产生并输出一定频率的时钟信号,保证待修调振荡器输出的时钟信号频率与电网频率存在一个固定的线性关系。所述的待修调振荡单元包括:待修调振荡器,用于产生输出脉冲;基本偏置电流级,用于为待修调振荡器提供基本偏置电流;偏置电流阵列,用于根据所述的修调信号调整待修调振荡器的偏置电流,所述的偏置电流阵列包括N条可控偏置电流支路;所述的可控偏置电流支路设有控制开关,根据接收到的修调信号关闭或开启相应可控偏置电流支路。所述的待修调振荡器为输出频率受到偏置电流控制的片上振荡器。通过改变待修调振荡器的总的偏置电流(基本偏置电流级提供的基本偏置电流和偏置电路阵列提供的偏置电流的总和)从而改变待修调振荡器的输出频率。通过基本偏置电流级为待修调振荡器提供基本偏置电流,保证待修调振荡器有一个基本的振荡频率,通过偏置电流阵列对待修调振荡器进行频率修调使频率与目标频率一致。可控偏置电流支路数根据工艺偏差影响的大小(即所需要的修调范围)进行设定。所述的频率误差检测与补偿电路包括:计数器,用于对一个或多个基准脉冲周期内的时钟信号周期数进行计数;修调信号输出模块,用于根据计数器的计数结果向所述的控制开关发送相应的修调信号;延时模块,用于延时计数器的计数开始时间。计数器对基准脉冲的一个或多个周期内输出的时钟信号周期数进行计数获取输出信号频率与目标频率的差值,即用待修调振荡器输出信号的频率对该基准脉冲一个或多个周期进行计数完成对频率误差的检测,修调信号输出模块根据频率误差通过数字逻辑处理形成修调信号,并通过控制开关完成频率修调。由于芯片(电力电子芯片)上电稳定后,待修调振荡器输出信号的频率才能稳定,为保证修调结果的准确性,设置延时模块,使计数器上电后延时一定时间后才开始计数。所述的延时模块与计数器的使能本文档来自技高网
...

【技术保护点】
一种集成于电力电子芯片内的时钟发生器,其特征在于,包括:信号同步模块,用于采集电网频率,并产生基准脉冲;待修调振荡单元,用于产生并输出时钟信号;频率误差检测与补偿电路,用于根据基准脉冲和时钟信号的频率向待修调振荡单元发出相应的修调信号,控制待修调振荡单元对输出时钟信号进行频率修调。

【技术特征摘要】
1.一种集成于电力电子芯片内的时钟发生器,其特征在于,包括: 信号同步模块,用于采集电网频率,并产生基准脉冲; 待修调振荡单元,用于产生并输出时钟信号; 频率误差检测与补偿电路,用于根据基准脉冲和时钟信号的频率向待修调振荡单元发出相应的修调信号,控制待修调振荡单元对输出时钟信号进行频率修调。2.如权利要求1所述的集成于电力电子芯片内的时钟发生器,其特征在于,所述的待修调振荡单元包括: 待修调振荡器,用于产生输出脉冲; 基本偏置电流级,用于为待修调振荡器提供基本偏置电流; 偏置电流阵列,用于根据所述的修调信号调整待修调振荡器的偏置电流,所述的偏置电流阵列包括N条可控偏置电流支路; 所述的可控偏置电流支路设有控制开关,根据接收到的修调信号关闭或开启相应可控偏置电流支路。3.如权利要求2所述的集成于电力电子芯片内的时钟发生器,其特征在于,所述的频率误差检测与补偿电路包括: 计数器,用于对一个或多个...

【专利技术属性】
技术研发人员:韩雁孙俊刘晓鹏曹天霖
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1