控制板坯连铸结晶器中金属流动的方法及装置制造方法及图纸

技术编号:822916 阅读:152 留言:0更新日期:2012-04-11 18:40
一种用于在金属板坯或其他类似扁平产品生产,特别适用于钢坯生产中控制注入连铸结晶器中液态金属流动形状的方法,浸入式水口设有侧孔面对结晶器短壁,可以使所述的流动形状成为自然的“单流”或“双流”模式或者其他“非稳定”状态,其特征在于使用移动磁场作用于经过浸入式水口(3)的侧孔(2)进入到结晶器(18)的液态金属流,所述磁场由线性电磁感应器(14、14’、15、15’)产生,感应器设成面对水口任一侧的至少结晶器的一个壁,从而建立“双流”流场或者使其稳定。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及金属、特别是钢铁材料板坯或其他类似扁平形状产品的连铸。更具体地,本专利技术涉及通过控制结晶器中铸造金属的对流运动的形态来改善铸造产品的质量。
技术介绍
目前,尽管还不能对其原因予以解释,但是熔化金属在结晶器中的对流运动的方式是决定产品质量的关键因素,不仅涉及结晶器四周形成非常均匀、规则的凝固外壳,还涉及表面及亚表面的洁净程度(渣壳、凹坑、气泡或涉及夹杂的内清洁度)。已知的重要性在于一旦液态金属流经过浸入式水口的侧孔注入结晶器,完成金属铸造,这些缺陷进入铸造空间。在这点上需要说明,在P.H.Dauby、M.B.Assar和GD.Lawson的文章中“Voyage dans une lingotière de coulee continue.Mesures laseret électromagnétiques de 1‘hydrodynamique de 1’acler”,发表于Revue deMetallurgie,April 2001,Vol.4,p353-356,和在1998年西班牙马德里召开的第三次欧洲连铸会议上D.Gotthelf,P Andrzejewski,E.Julius和H.Haubrichde发表的“Mold flow monitoring-a tool to improve casteroperation”,第825页-833页。这些文献正式强调铸造过程中,钢液在结晶器中流动共有三种类型稳定形式的“单流”和“双流”以及一种非稳定随机型流动,铸造过程中瞬时状态特有的。后者的流动方式可以用图示加以描述位于水口两侧的半铸造区之间的液流由于处于特殊的扰动状态,甚至细微的扰动,如两个侧孔之间反向吹氩的流动速率差量变化,均导致液流瞬间非可控、非对称,致使“单流”和“双流”的形式发生无规律改变。然而,上述两种稳定液流本身则更清楚。本说明书的附图1A和1B对此进行了阐述。这些图示出了在通过铸造轴线的垂直平面和平行于连铸板坯结晶器两个长壁方向上主要流动轨迹的稳定模式。从图中可以看出“单流”模式(图1A)本质上导致金属射流1一旦离开水口3的侧孔2之后立即略微向上,朝着浇铸结晶器的金属自由表面(或月牙面)4流动。在此点上,液流穿过半铸造区的整个宽度,在该空间中,每个液流通过紧贴结晶器的长壁发展直至到达结晶器的短端壁5。如果必要的话,需要重申这些结晶器短端壁也称作“封闭壁”,它们被安装在结晶器长壁的末端,以保证结晶器内部周向连续性,从而密封铸造空间。通常每个液流1一旦到达结晶器短壁,随即被向下朝着拉坯的方向反射,图中以加粗的垂直箭头表示。当然,速率的精确绘制图则更为复杂。许多流线,如6,遵循的轨迹是更典型的抛物线,原因是总的向下的抽锭运动,但是图示液态金属向上喷涌确实也是一般形式,在模拟装置或实验条件观察“单流”模式时非常值得注意。相反,在“双流”模式中(图1B),每个射流1经过入水口3到达结晶器,全部水平地离开侧孔2,然后向结晶器短壁5蔓延,在这里发生诸如相互碰撞将射流分为两股,一股干流8向下反射,另一股7朝着月牙面4向上反射,在这一点上,第二股液流随后朝反方向流动到半铸造区,此时从结晶器短壁5向入水口3流动。这里需要再次说明,实际图形更为复杂,但是当观察者观看“双流”模式下的模型或实验操作屏幕时,全部图像的确呈“蝴蝶翅膀”形。目前随着我们理解的深入和试验数据的积累,我们能够非常了解如何根据相关连铸参数的调整,使前述两种流动模式的一种和另外一种变得稳定或者基本稳定。不讨论细节,以免对本专利技术产生不必要及冗余的理解,这里简单地说明连铸板坯的宽度越宽,连铸时拉速越低,“单流”形式中的流场越多,反之则是“双流”流场。需要指出通常连铸机操作人员在其职责范围内没有测定结晶器中金属稳定流动模式的手段。而且,据说通常这一过程确实与操作人员无关,因为在任何情况下操作员都无法知道如何或者说不能改变连铸速度和拉速,而这些参数由订单及车间里的工艺流程设定。然而,本申请人近期研究已经确定一方面由铸造产生的产品缺陷(对这些缺陷的消除)与另一方面结晶器中液态金属对流流动形式之间存在必然联系,而无需证明。如此,所观察到的质量缺陷的起因不仅由于非稳定流动问题,而且由于“单流”模式下稳定流动形式的问题,前者已经引起置疑。
技术实现思路
因此,本专利技术的目的是向板坯连铸操作员提供一种简单有效的工具,只是附加在设备上,而无需重新考虑设备设计,以保证操作员不需要用任何方式修改铸造参数就能够建立“双流”模式。本着这一目的,本专利技术提供了一种用于在金属板坯或其他类似扁平产品生产,特别适用于钢坯生产中控制注入连铸结晶器中液态金属流动形状的方法,浸入式水口设有侧孔面对结晶器短壁,可以使所述的流动形状成为自然的“单流”或“双流”模式或者其他“非稳定”状态,其特征在于使用移动磁场作用于经过浸入式水口的侧孔进入到结晶器的液态金属流,所述磁场由线性电磁感应器产生,感应器设成面对水口任一侧的至少结晶器的一个壁,从而建立“双流”流场或者使其稳定。依照一个优选的方法,通过使感应器放置成面对水口任一侧的至少结晶器的一个长壁,使用水平向外移动的磁场,方向从水口指向结晶器每个短壁。依照一个实施方法,产生的移动磁场贯穿整个铸造过程。依照另一种实施方法,仅在注入结晶器的金属流动处于非自然“双流”流场的条件下使用所述的移动磁场。补充说明,如果流动方式已经处于自然“双流”模式,则在已经安装所述感应器后,通过使所述的感应器放置成面对水口任一侧的至少结晶器的一个长壁制造水平移动磁场,使得每个感应器产生的磁场全部朝一个方向移动,以便使结晶器中液态金属全部绕着铸造轴线旋转流动。本专利技术还提供了一种实施按照本专利技术所述的方法的装置,包括一个电磁装置,由至少一对线性移动磁场感应器构成,感应器放置成至少面对结晶器的一个长壁,并且定向成使得产生一个水平移动的磁场,还包括一个可控多相电源,其特征在于所述电源与所述电磁装置的每一对线性感应器相连,以便每个感应器产生一个只是向外的移动磁场,其方向从浸入式水口指向结晶器的短壁。按照我们已经理解的内容,本专利技术采用了大家熟知的方法,如果可以这样说的话,它已经具备经济可行的长远发展空间,由多相静态线性感应器产生的运动磁场以便对结晶器中的液态金属动态作用,建立“双流”模式,或者稳定已经自然存在的“双流”模式。磁流体动力学(MHD)首次应用于金属连铸可以追溯到约30年前,至今仍被成功地使用。相反,持续进步也记录着它的历史。首次描述MHD涉及结晶器下面的铸造步骤,特别是二次冷却区,原因是磁屏蔽效应消失而使结晶器的铜板起了反作用。然而,以可控硅为基的多相电流源迅速出现,允许电流源在低激发电流频率下工作,低于10Hz,因此,考虑可利用的功率电平,剩余屏蔽效应使铜板不再扮演阻碍MHD在实际结晶器中应用的角色。许多而且是各种各样关于结晶器中的应用都涉及到MHD,范围从金属的简单流动,例如绕铸造轴线旋转,到金属自然流动方向的加速或制动,或者强制改变流动方向。很多已发表的文献(包括研究、文章、专利)都致力于这方面的研究。为了作一个简单的历史证明,我们这里简单提一下,1972年申请的法国No.2187465专利(IRSID),其中已经对作用于金属上的垂直移动磁场引起金属本文档来自技高网
...

【技术保护点】

【技术特征摘要】
【国外来华专利技术】

【专利技术属性】
技术研发人员:西博·坎斯特雷什
申请(专利权)人:罗泰莱克公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1