基于硅通孔技术的晶圆级大功率LED封装结构制造技术

技术编号:8343058 阅读:192 留言:0更新日期:2013-02-16 21:48
本实用新型专利技术公开了一种基于硅通孔技术的晶圆级大功率LED封装结构,包括硅载体、LED芯片和散热基板,其特征在于:所述的硅载体设有导电通道和导热通道,导电通道与安置于硅载体上的LED芯片连接,导电通道与设置在硅载体下端的散热基板连接;导热通道作为LED芯片的散热通道与散热基板连接;所述的散热通道与导电通道互不干涉。本实用新型专利技术降低了封装成本,可实现大批量生产、减少封装体积、节省材料,使电子产品更加小型化;提高电气性能和热可靠性能;提高发光效率,通过通孔及凹槽的工艺制作,可减少光的散射,提高光通量,通过预留出荧光粉涂覆层的位置实现荧光粉配量可控性和操作的方便,提高生产效率。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及大功率LED制造工艺,尤其是一种基于硅通孔技术的晶圆级大功率LED封装结构
技术介绍
大功率发光二极管(Light Emitting Diodes,LED)因具有高光效、低能耗、长寿命等优点而被认为是21世纪最有价值的新光源,并将取代传统光源成为第四代照明市场的主导。然而,目前大功率LED逐步取代传统照明光源面临的主要问题有两个一是LED器件的制造成本远高于传统光源的制造成本;二是LED器件由热引起的光衰等可靠性问题较为严重。美国 NIST (National Institute of Standards and Technology, NIST)在创新计划白皮书中提到,3-D TSV (Through Silicon Via, TSV)在封装尺寸、重量、功耗与多功能集成等方面的诸多优势将为半导体技术带来新的发展方向。基于娃通孔技术(ThroughSilicon Via, TSV)的晶圆级(Wafer LevelPackaging, WLP)LED封装结构是大功率LED封装的发展趋势,由于工艺技术的发展和市场的需求,要求LED产品具有更低成本、更高发光效率及可靠性等特性。WLP技术可实现大批量生产,提高了生产效率、降低了成本,但其热可靠性问题未得到改善;而采用TSV技术并在通孔处填充铜,其优良的散热性能可提升热管理,但其生产成本较高。公开号为CN201556637U “一种大功率LED封装基板”的专利中公开的一种在LED封装陶瓷基板上使用通孔的技术,其中通孔内壁上的纯铜层实现了芯片的电气互连,但其散热效率并不能满足高功率的需求;公开号为CN1862765A的专利中公开的一种“芯片级硅穿孔散热方法及其结构”,其裸芯片经过硅穿孔后填充金属或导热胶直接散热,改善了散热性能,但未能实现电气互连、且成本较高;公开号为CN201804913U的专利中公开的一种“圆片级LED封装结构”,通过通孔布线实现电气互连,但其散热性能不佳,工艺复杂。
技术实现思路
本专利技术的目的是针对目前LED封装成本高和热管理两大难题,为提高LED产品的发光效率、降低封装成本、并改善芯片的散热性能,而提供一种基于硅通孔技术的晶圆级大功率LED封装结构。本专利技术的目的是通过下述的技术方案来实现的一种基于硅通孔技术的晶圆级大功率LED封装结构,包括硅载体、LED芯片和散热基板,与现有技术不同的是所述的硅载体设有导电通道和导热通道,导电通道与安置于硅载体上的LED芯片连接,导电通道与设置在硅载体下端的散热基板连接;导热通道作为LED芯片的散热通道与散热基板连接;所述的散热通道与导电通道互不干涉。所述的硅载体设有贯穿其本体的硅通孔,硅通孔中填充金属柱形成所述的导电通道和导热通道。所述的硅载体呈凹槽形。所述的导电通道设置在凹槽形硅载体的两端,导热通道设置在凹槽形硅载体的中部。所述的金属柱为铜柱。一种基于硅通孔技术的晶圆级大功率LED封装方法,包括硅载体的制作方法,硅载体的制作方法包括以下步骤步骤I :制作硅通孔于硅片底面穿盲孔;步骤2 :镀制SiO2绝缘层于硅片穿盲孔面电镀SiO2绝缘层;步骤3 :铜填充于硅片穿盲孔面点电镀铜,将铜柱填充盲孔,并点光刻胶于用于电气连接端和散热孔道上,蚀刻沟槽; 步骤4 :硅载体圆形凹槽加工于硅片正面涂光刻胶,同时在光刻版上制作出与圆形凹槽相对应的图形,圆形凹槽包括上圆面和下圆面,曝光后采用干法蚀刻,刻蚀面积逐渐由上圆面至下圆面大小,再刻蚀中间部分至凹形槽高度,预留出用于电气连接的铜柱,得到散热通道和导电通道;步骤5 =LED芯片焊盘的制作对在步骤4中预留的电气连接的铜柱处电镀芯片焊盘,得到芯片连接焊盘,完成硅载体的制备。上述步骤3中,蚀刻沟槽后,再对铜填充进行热处理,去除铜填充中的热应力,并进行化学机械抛光处理镀铜表面。上述步骤4后,对凹槽表面进行化学机械抛光处理。本专利技术具有以下优点I.降低封装成本,相对传统封装形式而言,采用WLP技术可实现大批量生产、减少封装体积、节省材料,使电子产品更加小型化;2.提高电气性能和热可靠性能,相对一般封装形式而言,采用TSV技术在通孔中填充铜可提高芯片的散热性能,并利用铜导线实现电气互连,可减小LED的封装体积使其电气互联线路更短,集成度更高;3.提高发光效率,通过通孔及圆形凹槽的工艺制作,可减少光的散射,提高光通量,并通过预留出荧光粉涂覆层的位置,实现荧光粉配量可控性和操作的方便,可提高生产效率。附图说明图I为实施例中传统结构采用TSV技术的LED封装结构示意图;图2为实施例中垂直结构采用TSV技术的LED封装结构示意图;图3为实施例中倒装结构采用TSV技术的LED封装结构示意图;图4a_图4e为截面图,其示意性地示出了本专利技术实施例硅载体的制作方法。图中,I.硅载体2.荧光粉涂层3. LED芯片4.焊盘5.铜柱5_1.绝缘层5_2.芯片连接焊盘6.散热基板7.导线8.盲孔。具体实施方式以下结合附图和实施例对本
技术实现思路
作进一步的阐述,但不是对本专利技术的限定。实施例参照图I-图3,一种基于硅通孔技术的晶圆级大功率LED封装结构,包括硅载体I、LED芯片3和散热基板6,硅载体I设有导电通道和导热通道,导电通道与安置于硅载体I上的LED芯片3连接,导电通道与设置在硅载体I下端的散热基板6连接;导热通道作为LED芯片3的散热通道与散热基板6连接;所述的散热通道与导电通道互不干涉。导热通道与散热基板6设有的可贴装焊接的焊盘4粘结。散热基板6为氮化铝(AIN)基板。硅载体I设有贯穿其本体的硅通孔,硅通孔中填充金属柱形成所述的导电通道和导热通道,金属柱为铜柱5。导电通道通过引线键合将LED芯片3与导电通道上设有的芯片连接焊盘5_2粘接,导电通道通过导线7与散热基板6连接。·硅载体I呈凹槽形,在凹槽中设置荧光粉涂层2。导电通道设置在凹槽形硅载体I的两端,导热通道设置在凹槽形硅载体I的中部。—种基于娃通孔技术的晶圆级大功率LED封装方法,该方法将娃载体I的中心部分表面涂银胶,并贴装LED芯片3于其上端,通过引线键合将LED芯片3的正、负极与硅载体I连接,将带有LED芯片3的硅载体I焊接于散热基板6上,并通过散热基板6上的散热焊盘4和芯片连接焊盘5-2贴装于PCB板上,实现了散热和电气互联互不干涉,并具有优良的导热性能。上述方法中的硅载体I,其制作方法包括以下步骤步骤I :硅通孔制作于硅片底面穿盲孔8,如图4a所示;步骤2 :镀制SiO2绝缘层于硅片穿盲孔8面电镀SiO2绝缘层5-1,如图4b所示;步骤3 :铜填充于硅片穿盲孔8面点电镀铜,将铜柱5填充盲孔8,并点光刻胶于用于电气连接端和散热孔道上,蚀刻沟槽,如图4c所示;步骤4 :硅载体圆形凹槽加工于硅片正面涂光刻胶,同时在光刻版上制作出与圆形凹槽相对应的图形,圆形凹槽包括上圆面和下圆面,曝光后采用干法蚀刻,刻蚀面积逐渐由上圆面至下圆面大小,再刻蚀中间部分至凹形槽高度,预留出用于电气连接的铜柱,得到散热通道和导电通道,如图4d所示;步骤5 :芯片焊盘的制作对在步骤4中预留的电气连接的铜柱处电镀芯片焊盘,得到芯片连接焊盘5-2,完成硅载体I的制备,如图4e所示。步骤3中,蚀刻沟槽后,再对铜填充进行热处理,去除铜填充中的热应力,并进行本文档来自技高网
...

【技术保护点】
一种基于硅通孔技术的晶圆级大功率LED封装结构,包括硅载体、LED芯片和散热基板,其特征在于:所述的硅载体设有导电通道和导热通道,导电通道与安置于硅载体上的LED芯片连接,导电通道与设置在硅载体下端的散热基板连接;导热通道作为LED芯片的散热通道与散热基板连接;所述的散热通道与导电通道互不干涉。

【技术特征摘要】
1.一种基于硅通孔技术的晶圆级大功率LED封装结构,包括硅载体、LED芯片和散热基板,其特征在于所述的硅载体设有导电通道和导热通道,导电通道与安置于硅载体上的LED芯片连接,导电通道与设置在硅载体下端的散热基板连接;导热通道作为LED芯片的散热通道与散热基板连接;所述的散热通道与导电通道互不干涉。2.根据权利要求I所述的基于硅通孔技术的晶圆级大功率LED封装...

【专利技术属性】
技术研发人员:潘开林朱玮涛任国涛黄静黄鹏
申请(专利权)人:桂林电子科技大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1