当前位置: 首页 > 专利查询>浙江大学专利>正文

一种机器人智能控制装置制造方法及图纸

技术编号:2773881 阅读:95 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种机器人智能控制装置。本发明专利技术所要解决的技术问题是提供一种用单片机和红外线收发技术实现自动导航、避障、检测和操作的机器人智能控制装置。解决该问题的技术方案是:一种机器人智能控制装置,其特征在于该控制装置包括单片机主控单元、A/D转换器、电压检测电路、气体检测电路、颗粒流量检测电路、防撞电路、对地红外防跌落电路、导航电路、驱动电路和电源电路。本发明专利技术可用于在家庭、公共服务空间等场所进行清洁等服务。

Intelligent control device for robot

The invention relates to an intelligent robot control device. The technical problem to be solved by the invention is to provide an intelligent robot control device for realizing automatic navigation, obstacle avoidance, detection and operation by using a single chip microcomputer and an infrared transceiver technology. The solution is: a robot intelligent control device, which is characterized in that the control device comprises a single-chip microcomputer control unit, A / D converter, voltage detection circuit, detection circuit, gas particle flow detection circuit, circuit of infrared anti-collision, anti dropping circuit, navigation circuit, drive circuit and power supply circuit. The invention can be used for cleaning and other services in families, public service spaces and other places.

【技术实现步骤摘要】

本专利技术涉及一种机器人智能控制装置。适用于在家庭、公共服务空间等场所进行清洁等服务。
技术介绍
目前,机器人大都应用接触性传感器实现机器人自主导航,这类装置精度比较高,须利用超声数据,识别和跟踪道路边缘,将超声数据与图像数据结合,通过事先训练好的神经网络来预测障碍物可能位置,使机器人在动态非结构化环境中实现自主导航。家用服务型机器人由于制造成本和生产工艺的因素,以上技术在应用上则较为困难,另外,现有的机器人还存在着人为参与动作过多,功耗高,噪音大等问题。
技术实现思路
本专利技术要解决的技术问题是提供一种用单片机和红外线收发技术实现自动导航、避障、检测和操作的机器人智能控制装置。本专利技术所采用的技术方案是一种机器人智能控制装置,其特征在于该控制装置包括单片机主控单元、A/D转换器、电压检测电路、气体检测电路、颗粒流量检测电路、防撞电路、对地红外防跌落电路、导航电路、驱动电路和电源电路,其中单片机主控单元由微处理器A和微处理器B组成,微处理器A、微处理器B和A/D转换器之间通过功能端脚互相连接,实现控制装置的数据交换与操作;电压检测电路的输出信号送到处理器B的脚2,用于监控装置的电压;气体检测电路的输出信号送到微处理器B的脚8,用于判断空气的综合质量;颗粒流量检测电路由一对红外发射、接收管采集信号,输出的电信号发送至A/D转换器的脚19,转换成数字信号后进入微处理器A进行处理,输出信号用于控制驱动电路;防撞电路由二对红外发射、接收管采集信号,输出的二路信号分别输至微处理器B的脚9和脚11,输出信号用于控制驱动电路; 对地红外防跌落电路由四对红外发射、接收管采集信号,其输出信号经放大后接入微处理器A的脚40、脚7、脚5、脚8,输出信号用于控制驱动电路;导航电路由四对红外发射、接收管和二对霍尔传感器采集信号,输出信号经多路切换电路U4后输出到运算放大器U2进行信号处理,处理过的信号经U2的脚7输出至A/D转换器的脚14进行A/D转换,转换后的数字信号进入微处理器A进行处理,输出信号用于控制驱动电路;驱动电路接受微处理器A的控制,由四位数值比较器U9、U10,电机驱动器U11和晶振电路U8组成,U9、U10取样电平由U8的脚3、4、5、6在4M晶振分频后得到,U11的输出信号分别控制两个减速电机的方向和速度。本专利技术的有益效果是通过单片机控制和红外线收发技术,采用直接自适应器对机器人进行轨迹控制的方案;进行脉宽调制(PWM)分段,步进式输出1Hz~3kHz的PWM,它占用的CPU时间短。可实现服务型机器人的自动导航、避障、检测和操作,无须人为操作,此设计的结构简单、成本低、可靠性好、抗干扰能力强。附图说明图1是本专利技术的装置结构图。图2-1是本专利技术的原理总图。图2-2是本专利技术的另一原理总图。图3是图2-2中电压检测电路的原理图。图4是图2-2中气体检测电路的原理图。图5是图2-1中颗粒流量检测电路的原理图。图6是图2-2中防撞电路的原理图。图7是图2-1中对地红外防跌落电路的原理图。图8是图2-1中导航电路的原理图。图9是图2-1中驱动电路的原理图。图10是图2-1中电源电路的原理图。图11是图2-1中电源开关电路的原理图。图12是图2-1中风机及告警电路的原理图。具体实施例方式如图1所示,本实施例由微处理器A1、微处理器B2、A/D转换器3、电压检测电路4、气体检测电路5、颗粒流量检测电路6、防撞电路7、对地红外防跌落电路8、导航电路9、驱动电路10和电源电路11组成。如图2、图3所示,微处理器A(U12型号68HC705C9A,以下简称U12)1和微处理器B(U301型号AT89C2051,以下简称U301)2组成单片机主控单元,单片机主控单元和A/D转换器3(U3型号68HC68,以下简称U3)之间通过功能端脚互相连接,实现控制装置的数据交换与操作。电压检测电路4由电阻R301、R302、R303、W1组成取样电路,取样电压经分压后输送到比较器U300A(型号LM393),U300A的脚2大约有2.5V左右的电压,而U300A脚3的电压经分压后如果此电位高于脚2的电位,U300A的脚1输出高电平,反之输出低电平,输出信号送到U301的脚2,用于监控装置的电压并点亮LED。气体检测电路5中的气体探头检测出空气质量污染严重时,由J303的脚3输出高电平信号,送到比较器U300B的脚6,与U300B的脚5做电位比较,由于脚6为反向输入端,此时U300B的脚7输出低电平,送到U301的脚8。如果空气质量良好,则U300B的脚7输出高电平。电阻R323、W2、C306组成一个基准电压电路。颗粒流量检测电路6由JP7的脚4、5导通5V红外线发射管,该管与JP9的脚5的接收管形成对射,当固体颗粒扰动,使红外线接收量降低,形成低电平,直接发送信号到U3的脚19,转换成数字信号后进入微处理器U12进行处理,输出信号用于控制驱动电路10。防撞电路7由二对红外发射、接收管IR5、IR6采集信号,从J302的脚1、脚4输出二路信号,分别经三极管Q302、Q303放大后输至微处理器U301的脚11和脚9,输出信号用于控制驱动电路10。对地红外防跌落电路8由四对红外发射、接收管采集信号,红外接收管的输入信号分别输到JP9的脚7、JP7的脚1、JP5脚3、JP2的脚5,其输出信号分别通过JP9的脚7、JP7的脚1、JP5的脚3、JP2的脚5输送到三极管Q801、Q802、Q803、Q804的基极,信号经放大后接入微处理器U12的脚40、脚7、脚5、脚8,输出信号用于控制驱动电路10。导航电路9由四对红外发射、接收管和二对霍尔传感器采集信号,红外接收管IR1、IR2、IR3、IR4的输入信号分别送到多路切换电路U4(型号MC14052B)的脚11、12、15、14,U4的输出信号通过脚13、3输出到U2(型号TLV2274M)的脚13、10进行信号处理,处理过的信号经U2的脚7输出至U3的脚14进行A/D转换,转换后的数字信号进入微处理器U12进行处理,输出信号用于控制驱动电路10。霍尔传感器H1、H2的输出信号输送到U3的脚9和脚11,经过A/D转换后的时序脉冲进入微处理器U12的脚34、35,经CPU运算后控制驱动电路10中电机的转向。驱动电路10接受微处理器U12的控制,由四位数值比较器U9(型号MC74HC85)和U10(型号MC74HC85),电机驱动器U11(型号L6204)和晶振电路U8(型号SN74HC393)组成。控制信号由微处理器U12的脚13、14、15、16脚输出至四位数值比较器U9的脚10、12、13、15,微处理器U12的脚18、19、20、21输出至四位数值比较器U10的脚10、12、13、15,经判断后,其中一路U9的脚7和脚5输出到U11的脚9和脚12,再由U11的脚4和脚18输出,控制JP2的脚1、2的右减速电机的速度;另一路U10的脚7和脚5输出到U11的脚2和脚19,由U11的脚7和脚13输出,控制JP5的脚1、2左减速电机的速度。U9、U10的取样电平由U8的脚3、4、5、6在4M晶振分频后得到。电源电路11,12V电池电压经三端稳压管U5(型号78L05)稳压后,输出5V电压,供给机器电本文档来自技高网...

【技术保护点】
一种机器人智能控制装置,其特征在于该控制装置包括单片机主控单元、A/D转换器(3)、电压检测电路(4)、气体检测电路(5)、颗粒流量检测电路(6)、防撞电路(7)、对地红外防跌落电路(8)、导航电路(9)、驱动电路(10)和电源电路(11),其中:    单片机主控单元由微处理器A(1)和微处理器B(2)组成,微处理器A(1)、微处理器B(2)和A/D转换器(3)之间通过功能端脚互相连接,实现控制装置的数据交换与操作;    电压检测电路(4)的输出信号送到处理器B(2)的脚2,用于监控装置的电压;    气体检测电路(5)的输出信号送到微处理器B(2)的脚8,用于判断空气的综合质量;    颗粒流量检测电路(6)由一对红外发射、接收管采集信号,输出的电信号发送至A/D转换器(3)的脚19,转换成数字信号后进入微处理器A(1)进行处理,输出信号用于控制驱动电路(10);    防撞电路(7)由二对红外发射、接收管采集信号,输出的二路信号分别输至微处理器B(2)的脚9和脚11,输出信号用于控制驱动电路(10);    对地红外防跌落电路(8)由四对红外发射、接收管采集信号,其输出信号经放大后接入微处理器A(1)的脚40、脚7、脚5、脚8,输出信号用于控制驱动电路(10);    导航电路(9)由四对红外发射、接收管和二对霍尔传感器采集信号,输出信号经多路切换电路U↓[4]后输出到运算放大器U↓[2]进行信号处理,处理过的信号经U↓[2]的脚7输出至A/D转换器(3)的脚14进行A/D转换,转换后的数字信号进入微处理器A(1)进行处理,输出信号用于控制驱动电路(10);    驱动电路(10)接受微处理器A(1)的控制,由四位数值比较器U↓[9]、U↓[10],电机驱动器U↓[11]和晶振电路U↓[8]组成,U↓[9]、U↓[10]取样电平由U↓[8]的脚3、4、5、6在4M晶振分频后得到,U↓[11]的输出信号分别控制两个减速电机的方向和速度。...

【技术特征摘要】

【专利技术属性】
技术研发人员:陈纯应放天潘云鹤卜佳俊
申请(专利权)人:浙江大学
类型:发明
国别省市:86[中国|杭州]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利