一种石蜡加氢精制工艺制造技术

技术编号:14405803 阅读:57 留言:0更新日期:2017-01-11 17:22
本发明专利技术公开了一种石蜡加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢脱硫脱氮催化剂,所述催化剂包括载体和活性组分;所述载体为MSU‑G、SBA‑15和HMS的复合物或混合物;所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物;所述固定床反应器的反应条件为:反应温度为250‑300℃,氢分压为2.8‑3.6MPa,氢蜡体积比150‑300,体积空速0.6‑2.0h‑1。该工艺可以将石蜡总硫含量控制在低于5ppm,同时对石蜡中的总氮含量控制在10ppm之内。

【技术实现步骤摘要】

本专利技术涉及石蜡加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的石蜡加氢精制工艺
技术介绍
石蜡是石油加工产品的一种,是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶。石蜡分为食品蜡、全精炼石蜡、半精炼石蜡、粗蜡、火柴蜡和黑蜡等大类。石蜡分成许多品级出售,主要区别是熔点不同。根据用途的不同,对石蜡的质量要求不同。由于来自石油的粗蜡含有硫等众多杂质,因此其不能直接作为产品使用,需要经过精制工艺,以在保持产品的熔点、油含量、针入度等特性指标基本不变的同时实现产品的深度精制,精制的深度应符合下述要求:①将硫、氮、氧的非烃类化合物加氢,脱除其中的硫、氮和氧;②将烯烃、芳烃特别是稠环芳烃加氢饱和;③尽量减少发生C-C键断裂生成小分子的裂解反应,避免加氢石蜡含油量增加。而在众多石蜡精制工艺中,石蜡加氢精制工艺由于其能在保持原料油分子骨架结构不发生改变或者变化很小的情况下,将杂质脱除,达到改变油品吃了的目的,因此得到广泛的应用。截止到2005年,我国国内正常运转的石蜡加氢精制生产装置的设计能力接近1.3Mt/a,其中单套装置最大加工量为150kt/a。随着世界原油的重质化、劣质化日益加深,原油含硫量越来越高,高品质的轻质原油在不断减少。近年来炼厂加工的原油多为进口原油,相对密度逐年增高,本世纪初几年内全球炼厂加工原油的平均密度上升到0.8633左右。含硫量高的问题也十分严重,目前世界上含硫原油和高硫原油的产量占世界原油总产量的75%以上。20世纪90年代中期全球炼厂加工的原油平均含硫量为0.9%,本世纪初已经上升到1.6%。目前的石蜡加氢精制工艺,与馏分油加氢精制类似,一般包括原料预处理、加氢反应及生成物后处理三大部分。原料蜡一般经过滤、脱气等预处理,脱除原料中携带的杂质、微量水、溶剂和溶解的气态氧等,再与氢气混合、加热进入反应器,进行加氢精制反应。反应产物分别在高压和低压分离器内进行气液分离,再经汽提、干燥和过滤得到成品蜡。然而现有的石蜡加氢精制工艺均是针对以前的优质清油设置的。对于目前的高硫含量原油生产得到的原料蜡,由于其高硫含量,其采用的催化剂及加氢条件都难以适用。因此如何提供石蜡精制工艺,能有效将高硫含量的原料石蜡中的硫含量控制在10ppm以下,以满足标准,是本领域面临的一个难题。
技术实现思路
本专利技术的目的在于提出一种石蜡加氢脱硫精制工艺,该工艺可以将石蜡中的总硫含量降低到10ppm以下,以满足排放和腐蚀标准。为达此目的,本专利技术采用以下技术方案:一种石蜡加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。所述载体为MSU-G、SBA-15和HMS的复合物或混合物。所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。所述固定床反应器的反应条件为:反应温度为250-300℃,氢分压为2.8-3.6MPa,氢蜡体积比150-300,体积空速0.6-2.0h-1。本专利技术的目的之一就在于,提供一种3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能,所述协同效应表现在脱硫精制方面,而特殊的催化性能则是表现在对催化剂的使用寿命及催化活性的提高上。在催化剂领域,根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2nm的称为微孔;孔径大于50nm的称为大孔;孔径在2到50nm之间的称为介孔(或称中孔)。介孔材料是一种孔径介于微孔与大孔之间的具有巨大比表面积和三维孔道结构的新型材料,它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。但在目前的应用中,所述介孔材料在用于催化领域时,都是单独使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。少数研究文献研究了两种载体的复合,比如Y/SBA-15、Y/SAPO-5等,多数是以介孔-微孔复合分子筛和微孔-微孔复合分子筛为主。采用3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能的研究,目前尚未见报导。本专利技术的催化剂载体是MSU-G、SBA-15和HMS的复合物或混合物。所述复合物或混合物中,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。本专利技术采用的MSU-G、SBA-15和HMS介孔分子筛均是催化领域已有的分子筛,其已经在催化领域获得广泛研究和应用。MSU-G是一种具有泡囊结构状粒子形态和层状骨架结构的介孔分子筛,其具有高度的骨架交联和相对较厚的骨架壁而具有超强的热稳定性和水热稳定性,其骨架孔与垂直于层和平行于层的孔相互交联,扩散路程因其囊泡壳厚而很短。MSU-G分子筛的囊泡状粒子形态方便试剂进入层状骨架的催化中心,其催化活性很高。SBA-15属于介孔分子筛的一种,具有二维六方通孔结构,具有P3mm空间群。在XRD衍射图谱中,主峰在约1°附近,为(10)晶面峰。次强峰依次为(11)峰以及(20)峰。其他峰较弱,不易观察到。此外,SBA-15骨架上的二氧化硅一般为无定形态,在广角XRD衍射中观察不到明显衍射峰。SBA-15具有较大的孔径(最大可达30nm),较厚的孔壁(壁厚可达6.4nm),因而具有较好的水热稳定性。六方介孔硅HMS具有长程有序而短程相对无序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水热稳定性更好,同时短程相对无序的组织结构及孔径调变范围更大,使HMS材料具有更高的分子传输效率和吸附性能,适宜于作为大分子催化反应的活性中心。本专利技术从各个介孔材料中,进行复合配对,经过广泛的筛选,筛选出MSU-G、SBA-15和HMS的复合或混合。专利技术人发现,在众多的复合物/混合物中,只有MSU-G、SBA-15和HMS三者的复合或混合,才能实现加氢精制效果的协同提升,并能够使得催化活性长期不降低,使用寿命能够大大增加。换言之,只有本专利技术的MSU-G、SBA-15和HMS三者的特定复合或混合,才同时解决了协同和使用寿命两个技术问题。其他配合,要么不具备协同作用,要么使用寿命较短。所述复合物,可以采用MSU-G、SBA-15和HMS三者的简单混合,也可以采用两两复合后的混合,比如MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合。所述复合可以采用已知的静电匹配法、离子交换法、两步晶化法等进行制备。这些介孔分子筛和其复合物的制备方法是催化剂领域的已知方法,本专利技术不再就其进行赘述。本专利技术中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,专利技术人发现,不同的混合比例达到的效果完全不同。发本文档来自技高网
...

【技术保护点】
一种石蜡加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分,其特征在于,所述载体为MSU‑G、SBA‑15和HMS的复合物或混合物,所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述固定床反应器的反应条件为:反应温度为250‑300℃,氢分压为2.8‑3.6MPa,氢蜡体积比150‑300,体积空速0.6‑2.0h‑1。

【技术特征摘要】
1.一种石蜡加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分,其特征在于,所述载体为MSU-G、SBA-15和HMS的复合物或混合物,所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述固定床反应器的反应条件为:反应温度为250-300℃,氢分压为2.8-3.6MPa,氢蜡体积比150-300,体积空速0.6-2.0h-1。2.如权利要求1所述的加氢精制工艺,其特征在于,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。3.如权利要求1所述的加氢精制工艺,其特征在于,所述活性组分的总含量为...

【专利技术属性】
技术研发人员:朱忠良
申请(专利权)人:锡山区绿春塑料制品厂
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1