具有自我补偿功能的栅极驱动电路制造技术

技术编号:10487501 阅读:75 留言:0更新日期:2014-10-03 16:21
本发明专利技术提供一种具有自我补偿功能的栅极驱动电路,包括:级联的多个GOA单元,该第N级GOA单元包括:上拉控制模块、上拉模块、下传模块、第一下拉模块、自举电容模块、及下拉维持模块;该上拉模块、第一下拉模块、自举电容模块、下拉维持电路分别与第N级栅极信号点Q(N)和该第N级水平扫描线G(N)电性连接,该上拉控制模块与下传模块分别与该第N级栅极信号点Q(N)电性连接,该下拉维持模块输入直流低电压VSS。本发明专利技术通过设计具有自我补偿功能的下拉维持模块来提高栅极驱动电路长期操作的可靠性,降低阈值电压漂移对栅极驱动电路运作的影响;还可以设计成直接由一组直流信号源DC控制的下拉维持模块,既可以节省电路版图设计空间,又可以降低电路的整体功耗。

【技术实现步骤摘要】
具有自我补偿功能的栅极驱动电路
本专利技术涉及液晶
,尤其涉及一种具有自我补偿功能的栅极驱动电路。
技术介绍
GOA(Gate Driver on Array,阵列基板行驱动)技术是将作为栅极开关电路的TFT (Thin Film Transistor,薄膜场效应晶体管)集成于阵列基板上,从而省掉原先设置在阵列基板外的栅极驱动集成电路部分,从材料成本和工艺步骤两个方面来降低产品的成本。GOA 技术是目前 TFT-LCD (Thin Film Transistor-Liquid Crystal Display,薄膜场效应晶体管液晶显示器)
常用的一种栅极驱动电路技术,其制作工艺简单,具有良好的应用前景。GOA电路的功能主要包括:利用上一行栅线输出的高电平信号对移位寄存器单元中的电容充电,以使本行栅线输出高电平信号,再利用下一行栅线输出的高电平信号实现复位。 请参阅图1,图1为目前常采用的栅极驱动电路架构示意图。包括:级联的多个GOA单元,按照第N级GOA单元控制对显示区域第N级水平扫描线G (N)充电,该第N级GOA单元包括上拉控制模块I’、上拉模块2’、下传模块3’、第一下拉模块4’ (Key pull-down part)、自举电容模块5’、及下拉维持模块6’(Pull-down holding part)。所述上拉模块2’、第一下拉模块4’、自举电容模块5’、下拉维持电路6’分别与第N级栅极信号点Q(N)和该第N级水平扫描线G(N)电性连接,所述上拉控制模块I’与下传模块3’分别与该第N级栅极信号点Q(N)电性连接,所述下拉维持模块6’输入直流低电压VSS。 所述上拉控制模块I’包括第一薄膜晶体管Tl’,其栅极输入来自第N-1级GOA单元的下传信号ST(N-1),漏极电性连接于第N-1级水平扫描线G(N-1),源极电性连接于该第N级栅极信号点Q(N);所述上拉模块2’包括第二薄膜晶体管T2’,其栅极电性连接该第N级栅极信号点Q(N),漏极输入第一高频时钟信号CK或第二高频时钟信号XCK,源极电性连接于第N级水平扫描线G (N);所述下传模块3’包括第三薄膜晶体管T3’,其栅极电性连接该第N级栅极信号点Q(N),漏极输入第一高频时钟信号CK或第二高频时钟信号XCK,源极输出第N级下传信号ST(N);所述第一下拉模块4’包括第四薄膜晶体管T4’,其栅极电性连接第N+1级水平扫描线G (N+1),漏极电性连接于第N级水平扫描线G(N),源极输入直流低电压VSS ;第五薄膜晶体管T5’,其栅极电性连接第N+1级水平扫描线G(N+1),漏极电性连接于该第N级栅极信号点Q(N),源极输入直流低电压VSS ;所述自举电容模块5’包括自举电容Cb’ ;所述下拉维持模块6’包括:第六薄膜晶体管T6’,其栅极电性连接第一电路点P (N) ’,漏极电性连接第N级水平扫描线G (N),源极输入直流低电压VSS ;第七薄膜晶体管T7 ’,其栅极电性连接第一电路点P (N) ’,漏极电性连接该第N级栅极信号点Q (N),源极输入直流低电压VSS ;第八薄膜晶体管T8’,其栅极电性连接第二电路点K (N) ’,漏极电性连接第N级水平扫描线G(N),源极输入直流低电压VSS ;第九薄膜晶体管T9’,其栅极电性连接第二电路点K(N) ’,漏极电性连接该第N级栅极信号点Q(N),源极输入直流低电压VSS ;第十薄膜晶体管T10’,其栅极输入第一低频时钟信号LC1,漏极输入第一低频时钟信号LC1,源极电性连接第一电路点P(N),;第十一薄膜晶体管T11’,其栅极输入第二低频时钟信号LC2,漏极输入第一低频时钟信号LC1,源极电性连接第一电路点P(N) ’ ;第十二薄膜晶体管T12’,其栅极输入第二低频时钟信号LC2,漏极输入第二低频时钟信号LC2,源极电性连接第二电路点K(N) ’ ;第十三薄膜晶体管T13’,其栅极输入第一低频时钟信号LC1,漏极输入第二低频时钟信号LC2,源极电性连接第二电路点K(N) ’ ;第十四薄膜晶体管T14’,其栅极电性连接该第N级栅极信号点Q (N),漏极电性连接第一电路点P (N) ’,源极输入直流低电压VSS ;第十五薄膜晶体管T15’,其栅极电性连接该第N级栅极信号点Q(N),漏极电性连接第二电路点K(N) ’,源极输入直流低电压VSS ;其中,第六薄膜晶体管T6’与第八薄膜晶体管T8’负责非作用期间维持第N级水平扫描线G(N)的低电位,第七薄膜晶体管T7’与第九薄膜晶体管T9’负责非作用期间维持第N级栅极信号点Q(N)的低电位。 从整个电路架构上来看,下拉维持模块6’处于较长的工作状态,也就是第一电路点P(N) ’与第二电路点K(N) ’会长时间处于一个正向的高电位状态,这样电路中受到电压应力作用(Stress)最严重的几个元件就是薄膜晶体管16’、17’、18’、19’。随着栅极驱动电路工作时间的增加,薄膜晶体管T6’、T7’、T8’、T9’的阈值电压Vth会逐渐增加,开态电流会逐渐降低,这就会导致第N级水平扫描线G(N)和第N级栅极信号点Q(N)无法很好地维持在一个稳定的低电位状态,这也是影响栅极驱动电路可靠性最重要的因素。 对于非晶硅薄膜晶体管栅极驱动电路而言,下拉维持模块是必不可少的,通常可以设计为一组下拉维持模块,或者两组交替作用的下拉维持模块。设计成两组下拉维持模块主要目的就是为了减轻下拉维持模块中第一电路点P(N) ’与第二电路点K(N) ’控制的薄膜晶体管T6’、T7’、T8’、T9’受到的电压应力作用。但是实际量测发现,即使设计成两组下拉维持模块,薄膜晶体管Τ6’、Τ7’、Τ8’、T9’这四颗薄膜晶体管依然是整个栅极驱动电路电路中受到电压应力最严重的部分,也就是说薄膜晶体管的阈值电压(Vth)漂移最大。 请参阅图2a,为阈值电压漂移前后薄膜晶体管整体电流对数与电压曲线关系变化示意图,其中,实线是未发生阈值电压漂移的电流对数与电压关系曲线,虚线是阈值电压漂移后的电流对数与电压关系曲线。由图2a可知,在同一栅源极电压Vgs下,未发生阈值电压漂移的电流对数Log (Ids)大于阈值电压漂移后的电流对数。请参阅图2b,为阈值电压漂移前后薄膜晶体管整体电流与电压曲线关系变化示意图。由图2b可知,在同一漏源极电流Ids下,未发生阈值电压漂移的栅极电压Vgl小于阈值电压漂移后的栅极电压Vg2,即阈值电压漂移后,想要达到同等的漏源极电流Ids,需要更大的栅极电压。 由图2a与图2b可以看出,阈值电压Vth往正向漂移会导致薄膜晶体管的开态电流1n逐渐降低,随着阈值电压Vth的增加,薄膜晶体管的开态电流1n会持续降低,那么,对于电路而言,就无法很好地维持第N级栅极信号点Q(N)与第N级水平扫描线G(N)电位的稳定,这样就会导致液晶显示器画面显示的异常。 如上所述,栅极驱动电路中最容易失效的元件就是下拉维持模块的薄膜晶体管T6’、T7’、T8’、T9’,因此,为了提高栅极驱动电路和液晶显示面板的可靠性必须要解决这个问题。通常设计上的做法是增加这四颗薄膜晶体管的尺寸,但是,增加薄膜晶体管尺寸的同时也会增加薄膜晶体管工作的关态漏电流,本文档来自技高网...

【技术保护点】
一种具有自我补偿功能的栅极驱动电路,其特征在于,包括:级联的多个GOA单元,按照第N级GOA单元控制对显示区域第N级水平扫描线(G(N))充电,该第N级GOA单元包括:上拉控制模块、上拉模块、下传模块、第一下拉模块、自举电容模块、及下拉维持模块;所述上拉模块、第一下拉模块、自举电容模块、下拉维持电路分别与第N级栅极信号点(Q(N))和该第N级水平扫描线(G(N))电性连接,所述上拉控制模块与下传模块分别与该第N级栅极信号点(Q(N))电性连接,所述下拉维持模块输入直流低电压(VSS);所述下拉维持模块包括:第一薄膜晶体管(T1),其栅极电性连接第一电路点(P(N)),漏极电性连接第N级水平扫描线(G(N)),源极输入直流低电压(VSS);第二薄膜晶体管(T2),其栅极电性连接第一电路点(P(N)),漏极电性连接第N级栅极信号点(Q(N)),源极输入直流低电压(VSS);第三薄膜晶体管(T3),其采用二极体接法,栅极电性连接直流信号源(DC),漏极电性连接直流信号源(DC),源极电性连接第二电路点(S(N));第四薄膜晶体管(T4),其栅极电性连接第N级栅极信号点(Q(N)),漏极电性连接第二电路点(S(N)),源极输入直流低电压(VSS);第五薄膜晶体管(T5),其栅极电性连接第N‑1级下传信号(ST(N‑1)),漏极电性连接第一电路点(P(N)),源极输入直流低电压(VSS);第六薄膜晶体管(T6),其栅极电性连接第N+1级水平扫描线(G(N+1)),漏极电性连接第一电路点(P(N)),源极电性连接第N级栅极信号点(Q(N));第七薄膜晶体管(T7),其栅极电性连接第N级下传信号(ST(N)),漏极电性连接第一电路点(P(N)),源极输入直流低电压(VSS);第一电容(Cst1),其上极板电性连接第二电路点(S(N)),下极板电性连接第一电路点(P(N))。...

【技术特征摘要】
1.一种具有自我补偿功能的栅极驱动电路,其特征在于,包括:级联的多个GOA单元,按照第N级GOA单元控制对显示区域第N级水平扫描线(G(N))充电,该第N级GOA单元包括:上拉控制模块、上拉模块、下传模块、第一下拉模块、自举电容模块、及下拉维持模块;所述上拉模块、第一下拉模块、自举电容模块、下拉维持电路分别与第N级栅极信号点(Q(N))和该第N级水平扫描线(G(N))电性连接,所述上拉控制模块与下传模块分别与该第N级栅极信号点(Q(N))电性连接,所述下拉维持模块输入直流低电压(VSS); 所述下拉维持模块包括:第一薄膜晶体管(Tl),其栅极电性连接第一电路点(P(N)),漏极电性连接第N级水平扫描线(G(N)),源极输入直流低电压(VSS);第二薄膜晶体管(T2),其栅极电性连接第一电路点(P(N)),漏极电性连接第N级栅极信号点(Q(N)),源极输入直流低电压(VSS);第三薄膜晶体管(T3),其采用二极体接法,栅极电性连接直流信号源(DC),漏极电性连接直流信号源(DC),源极电性连接第二电路点(S(N));第四薄膜晶体管(T4),其栅极电性连接第N级栅极信号点(Q(N)),漏极电性连接第二电路点(S(N)),源极输入直流低电压(VSS);第五薄膜晶体管(T5),其栅极电性连接第N-1级下传信号(ST(N-1)),漏极电性连接第一电路点(P (N)),源极输入直流低电压(VSS);第六薄膜晶体管(T6),其栅极电性连接第N+1级水平扫描线(G(N+1)),漏极电性连接第一电路点(P(N)),源极电性连接第N级栅极信号点(Q(N));第七薄膜晶体管(T7),其栅极电性连接第N级下传信号(ST(N)),漏极电性连接第一电路点(P (N)),源极输入直流低电压(VSS);第一电容(Cstl),其上极板电性连接第二电路点(S(N)),下极板电性连接第一电路点(P(N))。2.如权利要求1所述的具有自我补偿功能的栅极驱动电路,其特征在于,所述上拉控制模块包括第八薄膜晶体管(T8),其栅极输入来自第N-1级GOA单元的下传信号(ST(N-1)),漏极电性连接于第N-1级水平扫描线(G(N-1)),源极电性连接于该第N级栅极信号点(Q(N));所述上拉模块包括第九薄膜晶体管(T9),其栅极电性连接该第N级栅极信号点(Q(N)),漏极输入 第一高频时钟信号(CK)或第二高频时钟信号(XCK),源极电性连接于第N级水平扫描线(G(N));所述下传模块包括第十薄膜晶体管(TlO),其栅极电性连接该第N级栅极信号点(Q(N)),漏极输入第一高频时钟信号(CK)或第二高频时钟信号(XCK),源极输出第N级下传信号(ST(N));所述第一下拉模块包括第十一薄膜晶体管(T11),其栅极电性连接第N+2级水平扫描线(G(N+2)),漏极电性连接于第N级水平扫描线(G(N)),源极输入直流低电压(VSS);第十二...

【专利技术属性】
技术研发人员:戴超
申请(专利权)人:深圳市华星光电技术有限公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1