一种钒酸铋/钛酸锶复合光催化剂的制备方法技术

技术编号:14648791 阅读:86 留言:0更新日期:2017-02-16 07:40
本发明专利技术公开了一种BiVO4/SrTiO3复合光催化剂的制备,主要用于光催化分解水产氢技术。本发明专利技术的方法是将BiVO4搅拌、超声分散于蒸馏水中,再加入SrTiO3,搅拌、超声;然后于40~60℃的恒温水浴蒸干;最后转移到马弗炉中,于450~500℃煅烧1~2h,即得BiVO4/SrTiO3复合光催化剂。本发明专利技术以产氢材料SrTiO3为主体,通过与SrTiO3复合形成异质结复合材料,以提高光生电子在半导体BiVO4界面上的迁移速率,同时拓宽SrTiO3在太阳能光谱中的吸收范围,从而提高钛酸锶SrTiO3光催化剂分解水产氢性能。实验表明,该光催化剂在分解水产氢工艺中,产氢量可达到611.6μmol/g。

【技术实现步骤摘要】

本专利技术涉及一种BiVO4/SrTiO3复合光催化剂的制备方法,主要用于光催化分解水产氢的技术中,属于复合材料
和清洁能源领域。
技术介绍
为了应对目前世界上对于能源和环境的相关要求,基于半导体的光催化分解水技术已经被人们广泛认可。这项技术的关键是寻找活性高、稳定性好的光催化剂。近些年来,研究学者们对钙钛矿材料产生了浓厚的研究兴趣,发现它们不仅在科学界而且在工程界都有着很广泛的应用,其中,以钛酸锶(SrTiO3)最符合人们对于催化剂的研究要求:催化活性较高、价格低廉、化学稳定性良好、物理性质(如超导性、电介质以及半导体光催化性能)优异等。但是SrTiO3的禁带宽度只有3.2eV,只能响应占太阳光4%左右的紫外光,对太阳能的利用率较低。因此,提高SrTiO3的催化活性,提高催化剂光生载流子的分离效率,以及促进载流子迁移到表面活性位是非常必要的。为了得到这样的光催化剂,合成不同形貌的SrTiO3(纳米球、纳米线、纳米管、纳米颗粒等),或者与其他半导体结合构筑异质结都是有效的合成手段。之前关于TiO2等半导体光催化剂都有过相关的研究资料,以及暴露活性晶面都是有效的合成手段。因此,我们希望能够寻找一种合适的半导体与SrTiO3形成异质结以提高光催化剂的性能。BiVO4是一种能够响应可见光的光催化剂,禁带宽度较窄,化学稳定性较好,是一种有效的可替代的半导体材料,其制备方法也已经相当纯熟,但是同样的,对于这种半导体来说,光生载流子的迁移速率较低,而且该催化剂本身是不能够产氢的。因此,我们是期望以产氢材料SrTiO3为主体,制备一种BiVO4/SrTiO3的复合材料,既具有BiVO4和SrTiO3的光催化性能,又具有光催化分解水产氢的功能,应用在清洁能源领域,用于代替化石燃料来解决能源短缺和环境污染问题。
技术实现思路
本专利技术的目的提供一种BiVO4/SrTiO3复合光催化剂的制备方法。一、BiVO4/SrTiO3复合光催化剂的制备本专利技术以产氢材料SrTiO3为主体,通过与SrTiO3复合形成异质结复合材料,以提高光生电子在半导体BiVO4界面上的迁移速率,同时拓宽SrTiO3在太阳能光谱中的吸收范围,从而提高钛酸锶SrTiO3光催化剂分解水产氢性能。具体制备工艺为:将BiVO4搅拌、超声分散于蒸馏水中,再加入SrTiO3,搅拌、超声,使二者充分混合;然后于40~60℃的恒温水浴蒸干;最后转移到马弗炉中,于450~500℃煅烧1~2h,即得BiVO4/SrTiO3复合光催化剂。BiVO4/SrTiO3复合光催化剂中,BiVO4的质量百分含量为1~9%。二、BiVO4/SrTiO3复合光催化剂的表征与分析1、X射线衍射分析(XRD)图1为制备的SrTiO、BiVO4和一系列复合物BiVO4/SrTiO3的XRD图谱(其中1%是复合物中BiVO4的质量百分含量,以此类推)。从图1中可以看出,采用水热法制备的SrTiO3样品为单晶立方晶相的SrTiO3(标准卡片JCPDS35-0734)。其中2θ在32.42°,39.9°8,46.48°,57.79°,67.73°处的衍射峰分别对应(110),(111),(200),(211)和(220)晶面。计算出SrTiO3的晶格参数a=b=c=3.905,与文献报道的一致。采用溶胶凝胶法制备的BiVO4样品为纯相的单斜晶相的BiVO4(JCPDS14-0688)。其中2θ在28.95°,30.55°处的衍射峰分别对应(121)和(040)晶面。所有复合物特征衍射峰的位置和峰形相对于纯的SrTiO3来说基本上没有发生改变,表明BiVO4的复合并不影响SrTiO3的晶格结构。但是相对于纯的BiVO4来说,其峰形在复合物中的表现并不明显,这可能是由于BiVO4的复合比例较小,因此XRD的检测相对困难。但是,随着BiVO4的复合比例的增大,从5%开始,复合物中能够可以明显检测到(121)晶面的特征衍射峰,这说明我们成功合成了SrTiO3和BiVO4两种半导体的复合材料。2、扫描电子显微镜分析(SEM)图3为制备的钒酸铋,钛酸锶以及复合物BiVO4/SrTiO3的扫描电镜图。(a)是水热法制备的SrTiO3,由许多均匀的小颗粒组成的球体,球体之间发生了一定的团聚现象,直径在200nm左右。(b)是采用溶胶凝胶法制备的BiVO4,颗粒较大,直径在1μm左右,但是孔状结构非常明显。(c)~(g)依次为1wt.%、3wt.%、5wt.%、7wt.%、9wt.%BiVO4/SrTiO3的复合材料。可以看出,复合材料在焙烧过程中都发生了一定的烧结,小颗粒紧密的粘连在一起形成了较大的颗粒,而且随着SrTiO3比例的增大,偶尔也出现一些层状结构,如图(d)~(f),而当复合比例达到9wt.%时,层状结构又消失了,这时的复合材料由无定型的纳米颗粒组成。3、紫外-可见漫反射分析(DRS)为了验证所制备的催化剂的光学性质,如图2是催化剂的紫外可见漫反射吸收光谱图,与我们设想的相似,BiVO4可以响应可见光,吸收边在520nm左右;而纯的SrTiO3,只能响应占太阳光4%左右的紫外光,吸收边在380nm左右;将两者复合起来之后,随着BiVO4复合比例逐渐增大,复合物的吸收边发生红移,吸收边分布在380-420nm左右,这意味着复合物对光的吸收能力逐渐增强,我们猜测这样的变化能够提高催化剂的光催化活性。根据公式:ahν=A(hν-Eg)n/2,计算得到各个样品的禁带宽度,如图4所示,BiVO4禁带宽度为2.4eV,这和文献报道的数据一致,纯的SrTiO3的禁带宽度为3.18eV,这和文献报道的数据也相差无几,其它复合物的禁带宽度也验证了我们的猜想,其禁带宽度分布在2.95~3.1eV。我们都知道,禁带宽度越窄,光子激发所需要的能量就相对越小,对于光生电子来说,其跃迁就越容易,这对于催化剂的光催化活性有着至关重要的作用。4、光电流测试(PT)虽然BiVO4本身能够响应可见光,禁带宽度较小,但是由于光量子效率较低阻碍了其本身的光催化活性。我们知道,电子受到光子能量的激发,产生的光生电子和空穴一部分在转移到催化剂表面的过程中会发生复合而失去活性,简称失活。因此,为了提高催化剂的光催化活性,一方面,我们要降低光生电子和空穴的复合几率,另一方面,也要加快电子和空穴的迁移速率。在光的照射下立即发生的瞬态光电流衰减可以对光电阳极的电荷重组行为进行解释。图5为复合物BiVO4/SrTiO3在偏压为0.6V的条件下的瞬时光电流。每隔10s在紫外光的照射下(λ<420nm)测试催化剂的电流密度,5wt.%BiVO4/SrTiO3的光电流最大,在开灯的瞬间,一部分光生电子和空穴在瞬间发生复合,光电流在最高峰处迅速降低,因此,电流的衰减可以被认为是光生电子和空穴对复合的标志,催化剂内部电子的积累或者催化剂表面空穴的积累都可能造成这种电荷重组。当关闭灯的时候,催化剂表面积累的空穴会作为瞬间的光电阴极与催化剂导带积累的电子发生反应。但是,这种现象在图5中几乎没有检测出来,因此,光电流的衰减主要是由于光电阳极上电子的迁移速度较差导致的,衰减时间可以通过公式D=(It-Is)/(Im-Is)计算本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/41/201610943494.html" title="一种钒酸铋/钛酸锶复合光催化剂的制备方法原文来自X技术">钒酸铋/钛酸锶复合光催化剂的制备方法</a>

【技术保护点】
一种BiVO4/SrTiO3复合光催化剂的制备方法,是将BiVO4搅拌、超声分散于蒸馏水中,再加入SrTiO3,搅拌、超声,使二者充分混合;然后于40~60℃的恒温水浴蒸干;最后转移到马弗炉中,于450~500℃煅烧1~2h,即得BiVO4/SrTiO3复合光催化剂。

【技术特征摘要】
1.一种BiVO4/SrTiO3复合光催化剂的制备方法,是将BiVO4搅拌、超声分散于蒸馏水中,再加入SrTiO3,搅拌、超声,使二者充分混合;然后于40~60℃的恒温水浴蒸干;最后转移到马弗炉中,于450~500℃煅烧1~2h,即得BiVO4/SrTiO3复合光催化剂。2....

【专利技术属性】
技术研发人员:王其召张淑玲焦丹花白燕佘厚德王芳平
申请(专利权)人:西北师范大学
类型:发明
国别省市:甘肃;62

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1