飞行器地面运动目标红外图像识别装置制造方法及图纸

技术编号:9794736 阅读:181 留言:0更新日期:2014-03-21 20:16
本发明专利技术公开了一种飞行器地面运动目标红外图像识别装置,所述装置包括红外图像非均匀性校正模块、图像旋转模块、图像配准模块、多级滤波模块、连通域标记模块、目标检测与特征识别模块、流程控制模块以及FPGA实现的互联模块。本发明专利技术采用图像处理和目标识别专用ASIC/SoC芯片、通用DSP处理器和FPGA处理器,完成不同层次的图像处理和目标识别算法,提高系统并行度、实时性,实时地实现了飞行器地面运动目标红外图像识别算法,同时,有效地降低了装置的功耗。

【技术实现步骤摘要】
飞行器地面运动目标红外图像识别装置
本专利技术属于红外图像处理与目标识别
,具体涉及一种飞行器地面运动目标红外图像识别装置。
技术介绍
飞行器属于动平台,平台的运动会导致图像背景的表观变化,同时待检测的目标也在运动,整幅图像的前景运动和平台运动产生的背景变化混合在一起,只有很好地把这两种运动分开,才能够准确的检测出运动目标并实现跟踪任务。因此,与静平台运动目标检测与跟踪算法相比,动平台运动目标检测与跟踪算法要复杂得多。由D.G.Lowe提出的SIFT (Scale-1nvariant feature transform)算法是一种经典有效的图像配准算法,可以用于区分前景与背景的运动,见文献:David G.Lowe, Distinctive image features fromscale invariant keypoints.1nternational Journal of Computer Vision, 2004。但是,该算法运算量大,在单一的DSP (digital signal processor)处理器上实现SIFT算法实现实时配准存在困难。另外,地面目标的检测与跟踪又存在背景复杂、易受干扰(如遮挡)等问题。飞行器红外图像自动目标识别通常是成像平台相对目标由远及近的过程,远距离时,目标多表现为点源目标,信息量少;中等距离时,目标多表现为斑状目标,可以利用其像面大小、简单形状和图像灰度分布信息;最后在较近的距离上,可以获得非常细致的特征信息,包括丰富的形状和纹理特征,并可用于识别分类,此时目标表现为面目标。相应地,从目标特征模型以及目标识别算法上都体现出多层次多尺度的特点。因此,特征提取映射及表达目标的特 征空间应该是分级的,从而充分挖掘各个阶段的目标信息,一般的识别算法不能应付这样一个搜索、探测、识别过程,要求开发远、中、近距离成像下的多态识别流程,如图1所示,使得处理系统能够正确的检测、跟踪和识别目标,这样系统负担更大。(I)远距离成像。一般情况下,飞行器在目标识别开始阶段为了获得更广阔的视野,多在较远的高度或者距离上获取场景。这时目标没有形状信息,表现为弱小的点源目标。采用匹配滤波、多级滤波等算法可以在二维空间或者时间一空间三维空间内抑制背景和噪声干扰,突出目标,从而实现目标的捕获。(2)中距离成像。飞行器在捕获到目标之后,会逐步靠近待识别目标,进入跟踪阶段。在跟踪阶段,为了减少系统计算量,可以合理设置波门。此时目标具有一定的形状信息,表现为斑状目标。为了利用区分背景与前景的运动,采用SIFT算子提取特征,从而实现图像配准。然后,使用多级滤波器突出目标信息,抑制背景杂波。(3)近距离成像。随着跟踪阶段飞行器不断靠近目标,目标表现出更多的轮廓、纹理等特征信息,此时目标表现为面目标。此时可以使用连通域标记与轮廓跟踪算法实现目标的跟踪,利用SIFT算子提取特征,在完成实现图像配准的同时,实现目标纹理的匹配与识别,最终达到识别任务。飞行器红外图像处理系统,一般都存在体积、重量和功耗等方面的约束,同时处理算法复杂性较高,因此必须要设计具有高计算能力和高灵活性并行结构的处理机来保证计算实时性。这同时也意味着对处理机有以下几个方面的要求:(I)实时性。飞行器目标识别多是为了指引飞行器检测并跟踪目标,而飞行器一般具有较高的运动速度,因此只有做到实时的目标识别才能保证平台在运动中对目标更精准的跟踪与定位。(2)小型化。飞行器的小型化趋势,要求处理系统实现同样或更多功能时,系统物理尺寸更小。(3)低功耗。飞行器的小型化将引起系统散热方面的问题。只有设计低功耗的处理系统才能保证系统热设计满足要求,从而保证系统工作的可靠性。传统的红外图像处理系统多米用“DSP+FPGA (Field Programmable Gate Array)”或者“多DSP+FPGA”结构,这种同构结构的处理系统存在功耗大、效率低等缺点,同时由于DSP处理器的通用性使得它在图像处理与目标检测识别算法优化方面存在瓶颈。
技术实现思路
针对现有技术的缺陷,本专利技术提供一种飞行器地面运动目标红外图像识别装置,旨在解决现有技术在动平台成像条件下,识别地面运动目标时功耗和实时性方面存在的问题。为实现上述目的,本专利技术采用以下技术方案:一种飞行器地面运动目标红外图像识别装置,包括红外非均匀性校正SoC芯片、图像旋转ASIC芯片、多级滤波ASIC芯片、连通域标记与轮廓跟踪ASIC芯片、主DSPO处理器、从DSPl处理器、主FPGAO处理器和从FPGAl处理器,其中,所述主DSPO处理器用于控制整个目标检测识别算法流程,完成目标检测与特征识别,以及与装置外部接口实现通信,接收飞行器的成像参数信息,同时输出检测、跟踪和识别结果信息;所述从DSPl处理器用于与所述从FPGAl处理器共同完成SIFT特征提取与图像配准功能,其中,所述从DSPl处理器完成图像配准步骤中的关键点描述和图像配准计算,并且将关键点描述向量(即得到的SIFT特征)传输给主DSPO作为目标特征用于目标识别处理;所述主FPGAO处理器用于构成各个ASIC/SoC芯片、主DSPO处理器和从FPGAl处理器的数据传输通道,并完成包括透视变换和波门设置的图像预处理,协助所述主DSPO处理器完成对各个ASIC/SoC的控制;所述从FPGAl处理器用于与所述从DSPl处理器共同完成SIFT特征提取与图像配准功能,从FPGAl完成图像配准步骤中的尺度空间极值检测、关键点定位和方向确定;所述红外非均匀性校正SoC芯片包括一个内嵌微处理器CPU和校正ASIC核,其中内嵌微处理器CPU完成定标过程和增益校正参数的更新过程,校正ASIC核完成实时校正;所述图像旋转ASIC芯片用于将二维旋转变换分解为三次一维平移运算,同时结合立方卷积插值(即双三次插值)算法,实现图像的旋转操作;所述多级滤波ASIC芯片用于根据对于弱小目标、背景和噪声频谱的分析,构建带通滤波器来抑制背景和噪声,其中,针对多种大小目标并存的情况,基于多级滤波算法,利用同一滤波模块的级联实现滤波器带宽的调整以提取不同大小的目标;所述连通域标记与轮廓跟踪ASIC芯片用于按照八邻域规则,对输入的多值分割图像中具有相同灰度值的连通像素赋予一致且唯一的标记;输出标记后的图像,标号按照连通域在图像中由左到右,由上到下出现的先后顺序,以自然数进行赋值。本专利技术的有益技术效果为:采用图像处理和目标识别专用ASIC/SoC芯片、通用DSP处理器和FPGA处理器,完成不同层次的图像处理和目标识别算法,提高系统并行度,实时地实现了飞行器地面运动目标红外图像识别算法。同时,图像处理和目标识别专用ASIC/SoC芯片的低功耗特性使得处理系统的功耗能够满足系统功耗和热设计要求。【附图说明】图1描述了飞行器地面运动目标自动识别处理的一般流程;图2描述了飞行器地面运动目标红外图像识别装置的功能实现框图;图3描述了飞行器地面运动目标红外图像识别装置的硬件实现结构;图4描述了主DSPO处理的操作流程;图5描述了从DSPl处理的操作流程;图6描述了红外图像非均匀校正SoC芯片的操作流程;图7描述了图像旋转ASIC芯片的操作流程;图8描述了 SIFT特征提取与本文档来自技高网
...

【技术保护点】
一种飞行器地面运动目标红外图像识别装置,包括红外非均匀性校正SoC芯片、图像旋转ASIC芯片、多级滤波ASIC芯片、连通域标记与轮廓跟踪ASIC芯片、主DSP处理器、从DSP处理器、主FPGA处理器和从FPGA处理器,其中,所述主DSP处理器用于控制整个目标检测识别算法流程,完成目标检测与特征识别,以及与装置外部接口实现通信,接收飞行器的成像参数信息,同时输出检测、跟踪和识别结果信息;所述从DSP处理器用于与所述从FPGA处理器共同完成SIFT特征提取与图像配准功能,其中,所述从DSP处理器完成图像配准步骤中的关键点描述和图像配准计算,并且将关键点描述向量(即得到的SIFT特征)传输给主DSP作为目标特征用于目标识别处理;所述主FPGA处理器用于构成各个ASIC/SoC芯片、主DSP处理器和从FPGA处理器的数据传输通道,并完成包括透视变换和波门设置的图像预处理,协助所述主DSP0处理器完成对各个ASIC/SoC的控制;所述从FPGA处理器用于与所述从DSP处理器共同完成SIFT特征提取与图像配准功能,从FPGA完成图像配准步骤中的尺度空间极值检测、关键点定位和方向确定;所述红外非均匀性校正SoC芯片包括一个内嵌微处理器CPU和校正ASIC核,其中内嵌微处理器CPU完成定标过程和增益校正参数的更新过程,校正ASIC核完成实时校正;所述图像旋转ASIC芯片用于将二维旋转变换分解为三次一维平移运算,同时结合立方卷积插值(即双三次插值)算法,实现图像的旋转操作;所述多级滤波ASIC芯片用于根据对于弱小目标、背景和噪声频谱的分析,构建带通滤波器来抑制背景和噪声,其中,针对多种大小目标并存的情况,基于多级滤波算法,利用同一滤波模块的级联实现滤波器带宽的调整以提取不同大小的目标;所述连通域标记与轮廓跟踪ASIC芯片用于按照八邻域规则,对输入的多值分割图像中具有相同灰度值的连通像素赋予一致且唯一的标记;输出标记后的图像,标号按照连通域在图像中由左到右,由上到下出现的先后顺序,以自然数进行赋值。...

【技术特征摘要】
1.一种飞行器地面运动目标红外图像识别装置,包括红外非均匀性校正SoC芯片、图像旋转ASIC芯片、多级滤波ASIC芯片、连通域标记与轮廓跟踪ASIC芯片、主DSP处理器、从DSP处理器、主FPGA处理器和从FPGA处理器,其中, 所述主DSP处理器用于控制整个目标检测识别算法流程,完成目标检测与特征识别,以及与装置外部接口实现通信,接收飞行器的成像参数信息,同时输出检测、跟踪和识别结果息; 所述从DSP处理器用于与所述从FPGA处理器共同完成SIFT特征提取与图像配准功能,其中,所述从DSP处理器完成图像配准步骤中的关键点描述和图像配准计算,并且将关键点描述向量(即得到的SIFT特征)传输给主DSP作为目标特征用于目标识别处理; 所述主FPGA处理器用于构成各个ASIC/SoC芯片、主DSP处理器和从FPGA处理器的数据传输通道,并完成包括透视变换和波门设置的图像预处理,协助所述主DSPO处理器完成对各个ASIC/SoC的控制; 所述从FPGA处理器用于与所述从DSP处理器共同完成SIFT特征提取与图像配准功能,从FPGA完成图像配准步骤中的尺度空间极值检测、关键点定位和方向确定; 所述红外非均匀性校正SoC芯片包括一个内嵌微处理器CPU和校正ASIC核,其中内嵌微处理器CPU完成定标过程和增益校正参数的更新过程,校正ASIC核完成实时校正; 所述图像旋转ASIC芯片用于将二维旋转变换分解为三次一维平移运算,同时结合立方卷积插值(即双三次插值)算法,实现图像的旋转操作; 所述多级滤波ASIC芯片用于根据对于弱小目标、背景和噪声频谱的分析,构建带通滤波器来抑制背景和噪声,其中,针对多种大小目标并存的情况,基于多级滤波算法,利用同一滤波模块的级联实现滤波器带宽的调整以提取不同大小的目标; 所述连通域标记与轮廓跟踪ASIC芯片用于按照八邻域规则,对输入的多值分割图像中具有相同灰度值的连通像素赋予一致且唯一的标记;输出标记后的图像,标号按照连通域在图像中由左到右,由上到下出现的先后顺序,以自然数进行赋值。2.根据权利要求1所述的飞行器地面...

【专利技术属性】
技术研发人员:张天序高士英王岳环钟胜颜露新俞鹏先鲁斌李浩
申请(专利权)人:华中科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1