【技术实现步骤摘要】
本专利技术主要涉及到在线视觉检测领域,特指一种。
技术介绍
为适应我国现代铁路的高速发展,保证铁路运营安全,铁道部门对铁路现场的轨道质量提出了严格要求。目前,针对铁轨缺陷的检测,有基于光、电、磁信号的电子检测法和基于机器视觉原理的视觉检测法两种方法。国内现场铁轨的缺陷检测基本采用电子检测法,几乎不采用视觉检测法。电子检测法一般用于检测铁轨的内部缺陷,且其检测精度较低,只适用于某些要求不高的场合。视觉检测法用于检测铁轨的表面缺陷,其原理是使用CCD成像技术获取铁轨图像,然后使用一定的图像处理技术对图像进行分析,从而自动检测和识别铁轨表面的缺陷。其中,铁轨缺陷包括几何结构缺陷、铁轨部件缺陷、铁轨表面缺陷等等。常见的铁轨表面缺陷有疤痕、裂纹、波纹擦伤等,存在表面缺陷的铁轨如果不加以维护或更换,就会逐渐发展成为严重的内部损伤,从而造成严重的列车事故,后果不堪设想。目前,我国铁道部门对现场铁轨状态的检测大多依靠人工巡检,其检测方式是在需要检测的铁路段,由检测人员推着钢轨探伤仪在需要检测的铁轨上行走,同时其他检测人员使用肉眼观察并记录铁轨的缺陷。由上可知,上述人工巡检的方式 ...
【技术保护点】
一种高速铁轨表面缺陷的实时视觉检测与识别方法,其特征在于,步骤为:(1)图像获取;在随列车在铁轨上高速行驶的情况下,获取铁轨线图像并将线图像拼接成一幅全景图像;(2)图像预处理;包括去除噪声的干扰和提取铁轨表面区域;(3)缺陷初步检测:包括使用逻辑或操作组合基于灰度补偿的检测结果和基于高帽操作的检测结果;检测图像中是否存在异常区域,如果没有则结束本次检测,否则继续进行处理;(4)缺陷精确定位:通过粘合单个缺陷算法、填充缺陷区域内孔洞算法和选择主要缺陷算法精确定位缺陷,并通过标记提取缺陷区域;(5)缺陷分类:提取和选择缺陷区域的特征,设计并训练一个BP神经网络,并使用BP神经网络对缺陷进行分类。
【技术特征摘要】
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。