【技术实现步骤摘要】
本专利技术涉及一种提高磁性多层膜结构中偏置场稳定性的方法,属于磁电子学和磁记录
技术介绍
1988年以来,随着交流阻抗随外磁场而变化的巨磁阻抗材料、电阻率随外磁场而变化的巨磁电阻材料和几何尺寸随外磁场而伸縮变化的巨磁致伸縮材料的问世,出现了磁电子器件这一新概念。基于多层膜巨磁电阻材料和自旋隧道结磁电阻材料的磁阻传感器比目前广泛应用的基于各向异性磁电阻材料传感器具有更大的磁电阻效应,灵敏度及信噪比更高,应用范围更广,可广泛应用于信息技术、车辆工业、生物医学、仪器仪表以及空间技术。目前,在国际上已将基于多层膜巨磁电阻材料和自旋隧道结磁电阻材料的磁电子传感器应用于磁场测量、电流测量、位置测量、位移与速度测量、应变测量、DNA检测等领域。 对磁电子器件中使用的磁性多层膜而言,在反向饱和场下长时间停留偏置场会逐渐降低,这一点在使用温度高于室温时表现得尤为明显。磁性多层膜的这一热磁稳定性问题严重地影响着磁电子器件可靠性和使用寿命。在实际应用中,人们大多在制备薄膜之前通过选择合适的缓冲层、铁磁层及反铁磁层材料与厚度,控制多层膜材料的微观结构与组织,来得到热磁稳定性相 ...
【技术保护点】
一种提高Co/Cu/NiFe/FeMn自旋阀结构多层膜结构中偏置场稳定性的方法,包括以下步骤: (1)、利用高真空磁控溅射设备在经过常规方法清洗的1mm厚的单晶硅衬底上依次沉积厚度为5nm的下部缓冲层Ta,厚度为4nm的Co铁磁层,厚度为2nm的Cu层,厚度为10nm NiFe层,厚度为13nm的PtMn和厚度为3nm的保护层Ta。上述磁性薄膜的生长条件:备底真空:5×10↑[-7]Pa,溅射用高纯度氩气气压:7×10↑[-2]Pa,溅射功率:120W,样品架旋转速率:20rpm,生长温度:室温,生长速率:0.03~0.12nm/s,在沉积时,施加100Oe平面诱导磁场, ...
【技术特征摘要】
一种提高Co/Cu/NiFe/FeMn自旋阀结构多层膜结构中偏置场稳定性的方法,包括以下步骤(1)、利用高真空磁控溅射设备在经过常规方法清洗的1mm厚的单晶硅衬底上依次沉积厚度为5nm的下部缓冲层Ta,厚度为4nm的Co铁磁层,厚度为2nm的Cu层,厚度为10nm NiFe层,厚度为13nm的PtMn和厚度为3nm的保护层Ta。上述磁性薄膜的生长条件备底真...
【专利技术属性】
技术研发人员:周广宏,王寅岗,李子全,陈建康,
申请(专利权)人:南京航空航天大学,
类型:发明
国别省市:84[]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。