一种复合透明导电薄膜及其制备方法技术

技术编号:19771256 阅读:50 留言:0更新日期:2018-12-15 07:51
本发明专利技术公开了一种复合透明导电薄膜的制备方法及其在抗静电方面的应用,其包括过渡层、导电层以及保护层:所述的过渡层形成于玻璃或塑料表面基材上,为丙烯酸聚氨酯或聚硅氧烷涂层;导电层为ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜和ZAO薄膜中的一种,沉积在上述过渡层上;保护层沉积在导电层上,为氧化硅、氮化钛或氮化硅的一种,通过控制保护层的厚度和致密度,提高了导电层的耐盐雾、湿热等环境性能的同时,解决了透明件表面积累静电电荷的问题。

【技术实现步骤摘要】
一种复合透明导电薄膜及其制备方法
本专利技术是一种复合透明导电薄膜及其制备方法,属于抗静电

技术介绍
透明塑料表面,比如电子行业以及飞机透明件等,容易产生电荷积累,造成产品的失效。传统方法是在产品表面湿法涂覆抗静电涂料避免静电的积累。抗静电涂料本身是一种比较成熟的产品,相关研究比较多,这些涂料往往通过添加导电填料或导电高分子等达到抗静电作用。对于透明塑料表面,透光性是产品重要的性能之一,而抗静电涂料中导电填料或导电高分子的添加,很大程度上降低了产品的透光性。而且,抗静电填料稳定性较差,在特殊环境,比如高湿高热或者盐雾等条件下,抗静电组分容易失效。目前,市场上透明抗静电涂料产品很少,很多产品的性能达不到使用要求。因此,如何在保持高透光性和环境稳定性的情况下,实现抗静电功能是一个需要解决的问题。
技术实现思路
针对现有技术中存在的不足之处,本专利技术提供了一种复合透明导电薄膜及其制备方法,其目的是制备具有高透光性和环境稳定性的抗静电功能薄膜。本专利技术的目的是通过以下技术方案来实现的:本专利技术技术方案提供了一种复合透明导电薄膜,该复合透明导电薄膜是在透明的塑料或玻璃基材1的表面依次制备过渡层2、导电层3和保护层4,其中:过渡层2为丙烯酸聚氨酯或聚硅氧烷涂层,厚度为0.1μm~5μm;导电层3为ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜或ZAO薄膜中的一种,厚度为20nm~100nm;保护层4为氧化硅、氮化钛或氮化硅中的一种,厚度为10nm~30nm。过渡层2的作用是提高导电薄膜的附着力,保护层4的作用是提高导电层3的耐环境性能,在保护下层导电薄膜的同时,不影响导电薄膜的电荷传递到表面。本专利技术技术方案还提供了一种制备该种复合透明导电薄膜的方法,其特征在于:该方法的步骤如下:步骤一、将丙烯酸聚氨酯涂料或聚硅氧烷涂料通过流涂或喷涂方法涂覆于基材1表面,固化后形成过渡层2,经划格法测试,涂层100%无脱落;步骤二、通过射频磁控溅射、直流脉冲磁控溅射或直流磁控溅射工艺将ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜或ZAO薄膜沉积在步骤一完成的过渡层2上,沉积温度为30~80℃,沉积时为过氧沉积,调控氧气比例为10~45%,得到导电层3,沉积后的方块电阻控制在104~1010Ω/□之间;步骤三、通过直流脉冲磁控溅射将氮化钛、氮化硅或氧化硅沉积在完成的导电层3上,沉积温度为30~80℃,得到保护层4。本专利技术可用于航空透明件以及电子显示产品表面的抗静电,弥补现有技术透光性和环境稳定性的不足。具有以下显著的优点:1这种透明复合薄膜,通过控制保护层的厚度在不影响导电膜的电荷传递到表面的同时,提高了导电膜的耐环境性,在透明薄膜、片材、玻璃或塑料表面表面抗静电应用具有很大的优势;2通过磁控溅射制备抗静电功能膜,可以调控导电膜镀制过程中氧气的含量,满足不同级别抗静电要求,工艺调整方便,得到的表面电阻精度高;3该方法可以制备任意尺寸和外形的具有抗静电功能的透明制件,光学质量高;4该方法制备过程中均采用的工艺温度低,满足常用塑料产品的工艺窗口。附图说明图1复合透明导电膜层的截面示意图图2调控氧气含量的面电阻变化曲线具体实施方式下面结合具体实施例对本专利技术中的技术方案作进一步地详述:参见附图1所示,本专利技术所述的复合透明导电薄膜的结构是在透明的塑料或玻璃基材1的表面依次制备过渡层2、导电层3和保护层4,其中:过渡层2为丙烯酸聚氨酯或聚硅氧烷涂层,厚度为0.1μm~5μm;导电层3为ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜或ZAO薄膜中的一种,厚度为20nm~100nm;保护层(4)为氧化硅、氮化钛或氮化硅中的一种,厚度为10nm~30nm。实施例1制备基于有机玻璃试样表面的复合导电膜,制备方法的步骤如下:(1)制备过渡层的原料:采用丙烯酸聚氨酯透明涂料,采用溶液聚合工艺,各组分名称和质量百分比为:甲基丙烯酸甲酯:20.0重量%;苯乙烯:10重量%;丙烯酸丁酯:5.0重量%;三羟甲基丙烷三丙烯酸酯:2.0重量%;引发剂(过氧化二苯甲酰):0.5重量%和溶剂(乙酸丁酯和PMP的等质量混合物):62.5重量%。合成时,先将15%重量的单体(甲基丙烯酸甲酯,苯乙烯,丙烯酸丁酯和三羟甲基丙烷三丙烯酸酯的混和物)与20%重量的溶剂入釜,在100℃回流温度下滴加剩余单体、溶剂及25%重量的引发剂的混合溶液,3h滴完,再补加剩余75%重量的引发剂溶液,回流保温4h,降温至60℃,得到丙烯酸聚氨酯透明涂料。(2)过渡层的制备将丙烯酸聚氨酯透明涂料利用流涂方式涂覆在有机玻璃表面,70°固化2h后,获得过渡层,涂层厚度为2μm;(3)导电层的制备利用直流磁控溅射镀制ITO膜,工作气体为氩气和氧气,固定氩气含量为30sccm,从5sccm到9sccm逐渐改变氧气含量,导电膜的电阻随氧气的增加从104Ω/□增加到108Ω/□,薄膜厚度为30nm,见图2所示,通过调节氧气含量可以满足不同抗静电的要求;(4)保护层的制备利用直流脉冲溅射镀制SiO2膜,工作气体为氩气和氧气,氩气与氧气分别为24sccm和6sccm,薄膜厚度为15nm。实施例2一种基于聚碳酸酯试样表面复合导电膜的制备方法,步骤如下:(1)制备过渡层的原料采用聚硅氧烷涂料,各组分名称和质量百分比为:正硅酸乙酯:4.7重量%;甲基三乙氧基硅烷:50.0重量%;KH550:4.7重量%;羟基硅油:0.2重量%;四丁基氢氧化铵:0.2重量%;异丙醇:40.2重量%。合成时,先将正硅酸乙酯和甲基三乙氧基硅烷的混合液入釜,添加少量醋酸至pH为3,升温到80℃回流反应2h,回流冷却。然后在55℃时加入KH550,搅拌2h后冷却到室温。最后,异常加入异丙醇、羟基硅油和四丁基氢氧化铵,得到了聚硅氧烷透明涂料。(2)过渡层的制备将聚硅氧烷涂料利用流涂方式涂覆在有机玻璃表面,120℃固化2h后,获得过渡层,涂层厚度为2μm。(3)导电层的制备利用直流磁控溅射镀制IZO膜,工作气体为氩气和氧气,固定氩气含量为30sccm,氧气为5sccm,导电膜的电阻为106Ω/□。(4)保护层的制备利用直流脉冲溅射镀制SiO2膜,工作气体为氩气和氧气,氩气与氧气分别为24sccm和6sccm,镀膜厚度为20nm。对比例1:本对比例提供一种基于有机玻璃试样表面复合导电膜的制备方法,步骤如下:(1)导电层的制备利用直流磁控溅射直接在有机玻璃透明塑料表面镀制ITO膜,工作气体为氩气和氧气,固定氩气含量为30sccm,氧气含量为5sccm,导电膜的电阻为105Ω/□。(2)保护层的制备:利用直流脉冲溅射镀制SiO2膜,工作气体为氩气和氧气,氩气与氧气分别为24sccm和6sccm,镀膜厚度为15nm。对比例2:本对比例提供一种基于聚碳酸酯试样表面复合导电膜的制备技术,步骤如下:(1)制备过渡层的原料采用聚硅氧烷涂料,各组分名称和质量百分比为:正硅酸乙酯:4.7重量%;甲基三乙氧基硅烷:50.0重量%;KH550:4.7重量%;羟基硅油:0.2重量%;四丁基氢氧化铵:0.2重量%;异丙醇:40.2重量%。合成时,先将正硅酸乙酯和甲基三乙氧基硅烷的混合液入釜,添加少量醋酸至pH为3,升温到80℃本文档来自技高网...

【技术保护点】
1.一种复合透明导电薄膜,其特征在于:在透明的塑料或玻璃基材(1)的表面依次制备过渡层(2)、导电层(3)和保护层(4),其中:过渡层(2)为丙烯酸聚氨酯或聚硅氧烷涂层,厚度为0.1μm~5μm;导电层(3)为ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜或ZAO薄膜中的一种,厚度为20nm~100nm;保护层(4)为氧化硅、氮化钛或氮化硅中的一种,厚度为10nm~30nm。

【技术特征摘要】
1.一种复合透明导电薄膜,其特征在于:在透明的塑料或玻璃基材(1)的表面依次制备过渡层(2)、导电层(3)和保护层(4),其中:过渡层(2)为丙烯酸聚氨酯或聚硅氧烷涂层,厚度为0.1μm~5μm;导电层(3)为ITO薄膜、AZO薄膜、IZO薄膜、TiO2薄膜、GAO薄膜或ZAO薄膜中的一种,厚度为20nm~100nm;保护层(4)为氧化硅、氮化钛或氮化硅中的一种,厚度为10nm~30nm。2.制备权利要求1所述的复合透明导电薄膜的方法,其特征在于:该方法的步骤如下:步骤一、将丙烯酸聚氨酯涂料或聚...

【专利技术属性】
技术研发人员:张旋钟艳莉颜悦郝常山彭晶晶
申请(专利权)人:中国航发北京航空材料研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1