当前位置: 首页 > 专利查询>深圳大学专利>正文

碱钨青铜纳米棒及其制备方法和应用技术

技术编号:19706755 阅读:76 留言:0更新日期:2018-12-08 16:01
本发明专利技术涉及一种碱钨青铜纳米棒及其制备方法和应用,属于纳米材料技术领域。所述碱钨青铜纳米棒的制备方法为:于冷水浴中,用双氧水将钨粉溶解,搅拌待钨粉完全反应,过滤,水浴搅拌加热得溶胶;向溶胶中加入分散剂,搅拌均匀,加入碱金属盐,继续搅拌均匀,得凝胶,将所得凝胶干燥得前驱体,将前驱体在非氧化气氛下煅烧,即得碱钨青铜纳米棒。本发明专利技术制得的碱钨青铜纳米棒粒径小、分散好、结晶性好,且本发明专利技术合成工艺简单、高效,产量大,原料易得,重现性好,有效解决了碱钨青铜纳米材料无法产业化的问题。

【技术实现步骤摘要】
碱钨青铜纳米棒及其制备方法和应用
本专利技术属于纳米材料
,具体涉及一种碱钨青铜纳米棒及其制备方法和应用。
技术介绍
钨青铜(MxWO3,0<x<1)的组成元素无确定化学计量比值,x值可在一定范围内变动,且不能用小整数比来表示,所以称为非化学计量化合物。MxWO3(0<x<1)中M元素可为碱金属、氢、稀土金属、钙、锶、钡、铜、银、铵等,也能用钼、钛、钽、锆、铌等金属代替其中的钨以生成其他青铜,此种化合物具备良好的物理与化学特性,如高电子电导率和快离子传输特性等,是一种低温超导体。非化学计量化合物因为存在晶格缺陷等而具有一些特殊的物理及化学特性,研究此种物质,为制备无机纳米新型材料开拓了较广的领域。碱钨青铜中的W具有混合价态(W6+、W5+、W4+),不同价态的W可相互转变,碱钨青铜化合物中存在晶格缺陷,具备特殊的物理及化学特性,所以在众多研究领域皆具备较好的研究价值与应用前景。目前已经被大量运用在光催化、传感器、电/光致变色器件、光热治疗、透明隔热涂层等领域。目前,用的比较多的碱钨青铜制备方法主要有固相球磨法、溶剂/水热法,但这些方法因为耗能大、产量小、粒径大、杂质多、重现性差等问题,而限制了这一材料的产业化。溶胶-凝胶法是指将原料溶于溶剂中形成溶液、溶胶、凝胶,再进行热处理形成晶体的过程。本专利技术通过溶胶-凝胶法合成出了一种粒径小、分散性好、结晶性好的碱钨青铜纳米棒,同时产量大、重现性好,解决了纳米钨青铜材料无法产业化的问题。
技术实现思路
本专利技术的目的是克服现有技术的不足而提供一种碱钨青铜纳米棒及其制备方法和应用,旨在解决现有碱钨青铜纳米粉体制备方法存在的耗能大、产量小、重现性差和现有制备方法所制碱钨青铜产品粒径大、杂质多等问题。本专利技术采用如下技术方案:碱钨青铜纳米棒的制备方法,步骤如下:于冷水浴中,用双氧水将钨粉溶解,搅拌待钨粉完全反应,过滤,水浴搅拌加热4~6h,得溶胶;向溶胶中加入分散剂,搅拌均匀,加入碱金属盐,继续搅拌均匀,得凝胶,将所得凝胶干燥得前驱体,将前驱体在非氧化气氛下煅烧,即得碱钨青铜纳米棒。更进一步地,所述分散剂为负离子表面活性剂十二烷基苯磺酸钠(SDBS)、正离子表面活性剂十六烷基三甲基溴化铵(CTAB)、非离子表面活性剂聚乙烯醇(PEG-600)或聚乙烯吡咯烷酮(PVP)中的一种。更进一步地,所述碱金属盐为氯化铯和氯化铷中的至少一种,所述碱钨青铜的分子式为CsxWO3,RbxWO3,CsxRbyWO3,其中0.2≤x≤0.33,0.2≤x+y≤0.33。更进一步地,所述分散剂的加入量为钨粉质量的5%。更进一步地,所述碱金属盐的加入量为钨粉物质的量的20%~50%。更进一步地,所述冷水浴的温度为10~20℃,所述双氧水的质量浓度为30%,所述水浴搅拌加热时,水浴的温度为80℃,更进一步地,所述干燥的方式为鼓风干燥、真空干燥、冷冻干燥或微波干燥。更进一步地,所述非氧化气氛为高真空气氛、氮气气氛、氩气气氛、氢气气氛、氨气气氛、氢氮混合气气氛、氢氩混合气气氛、氨氩混合气气氛或氨氢混合气气氛中的一种;所述锻烧时的温度为500~800℃,煅烧的时间为1~6h。本专利技术还提供由所述碱钨青铜纳米棒的制备方法制得的碱钨青铜纳米棒。本专利技术还提供由所述碱钨青铜纳米棒的制备方法制得的碱钨青铜纳米棒在隔热涂料或薄膜中的应用。本专利技术与现有技术相比,具有以下有益效果:本专利技术制得的碱钨青铜纳米棒粒径小、分散好、结晶性好,且本专利技术合成工艺简单、高效,产量大,原料易得,重现性好,有效解决了碱钨青铜纳米材料无法产业化的问题。附图说明图1为实施例1样品的X-射线衍射谱图;图2为实施例1样品的场发射扫描电镜照片;图3为实施例1样品的能谱仪测试结果;图4为实施例2样品的X-射线衍射谱图;图5为实施例2样品的场发射扫描电镜照片;图6为实施例2样品的能谱仪测试结果;图7为实施例3样品的X-射线衍射谱图;图8为实施例3样品的场发射扫描电镜照片;图9为实施例3样品的能谱仪测试结果。具体实施方式下面通过具体实施方式对本专利技术作进一步详细说明,但本领域技术人员将会理解,下列实施例仅用于说明本专利技术,而不应视为限定本专利技术的范围。实施例1称取0.02mol钨粉于500ml烧杯中,直接加入30mLH2O2(30%),并置于冷水中搅拌,使钨粉充分反应,大约1h后,待钨粉完全反应,过滤,80℃水浴搅拌加热,溶液由透明微黄变黄色溶胶,约5h后得到约10mL黄色溶胶。向溶胶加入0.18384g聚乙二醇600(5%钨粉质量),搅拌均匀后加入0.066molCsCl,搅拌均匀,得到黄色凝胶。将凝胶于干燥箱中80℃干燥得到前驱体。将前驱体至于管式炉中,在氩气气氛下,将温度升至600℃煅烧2h,得到铯钨青铜纳米棒。采用X-射线衍射仪、场发射扫描电子显微镜和能谱仪对所获粉体进行了表征。图1为本实施例所获得的铯钨青铜纳米棒的X-射线衍射谱图,图2为本实施例所获得的铯钨青铜纳米棒的场发射扫描电镜照片,图3为本实施例所获得的铯钨青铜纳米棒的能谱仪测试结果。实施例2称取0.02mol钨粉于500ml烧杯中,直接加入30mLH2O2(30%),并置于冷水中搅拌,使钨粉充分反应,大约1h后,待钨粉完全反应,过滤,80℃水浴搅拌加热,溶液由透明微黄变黄色溶胶,约5h后得到约10mL黄色溶胶。向溶胶加入0.18384g聚乙二醇600(5%钨粉质量),搅拌均匀后加入0.066molRbCl,搅拌均匀,得到黄色凝胶。将凝胶于干燥箱中80℃干燥得到前驱体。将前驱体至于管式炉中,在氩气气氛下,将温度升至600℃煅烧2h,得到铷钨青铜纳米棒。采用X-射线衍射仪、场发射扫描电子显微镜和能谱仪对所获粉体进行了表征。图4为本实施例所获得的铷钨青铜纳米棒的X-射线衍射谱图,图5为本实施例所获得的铷钨青铜纳米棒的场发射扫描电镜照片,图6为本实施例所获得的铷钨青铜纳米棒的能谱仪测试结果。实施例3称取0.02mol钨粉于500ml烧杯中,直接加入30mLH2O2(30%),并置于冷水中搅拌,使钨粉充分反应,大约1h后,待钨粉完全反应,过滤,80℃水浴搅拌加热,溶液由透明微黄变黄色溶胶,约5h后得到约10mL黄色溶胶。向溶胶加入0.18384g聚乙二醇600(5%钨粉质量),搅拌均匀后加入0.033molCsCl和0.033molRbCl,搅拌均匀,得到黄色凝胶。将凝胶于干燥箱中80℃干燥得到前驱体。将前驱体至于管式炉中,在氩气气氛下,将温度升至600℃煅烧2h,得到铯铷共掺杂钨青铜纳米棒。采用X-射线衍射仪、场发射扫描电子显微镜和能谱仪对所获粉体进行了表征。图7为本实施例所获得的铯铷共掺杂钨青铜纳米棒的X-射线衍射谱图,图8为本实施例所获得的铯铷共掺杂钨青铜纳米棒的场发射扫描电镜照片,图9为本实施例所获得的铯铷共掺杂钨青铜纳米棒的能谱仪测试结果。以上所述实施例仅是为充分说明本专利技术而所举的较佳的实施例,其保护范围不限于此。本
的技术人员在本专利技术基础上所作的等同替代或变换,均在本专利技术的保护范围之内,本专利技术的保护范围以权利要求书为准。本文档来自技高网
...

【技术保护点】
1.碱钨青铜纳米棒的制备方法,其特征在于,步骤如下:于冷水浴中,用双氧水将钨粉溶解,搅拌待钨粉完全反应,过滤,水浴搅拌加热4~6h,得溶胶;向溶胶中加入分散剂,搅拌均匀,加入碱金属盐,继续搅拌均匀,得凝胶,将所得凝胶干燥得前驱体,将前驱体在非氧化气氛下煅烧,即得碱钨青铜纳米棒。

【技术特征摘要】
1.碱钨青铜纳米棒的制备方法,其特征在于,步骤如下:于冷水浴中,用双氧水将钨粉溶解,搅拌待钨粉完全反应,过滤,水浴搅拌加热4~6h,得溶胶;向溶胶中加入分散剂,搅拌均匀,加入碱金属盐,继续搅拌均匀,得凝胶,将所得凝胶干燥得前驱体,将前驱体在非氧化气氛下煅烧,即得碱钨青铜纳米棒。2.根据权利要求1所述的碱钨青铜纳米棒的制备方法,其特征在于,所述分散剂为负离子表面活性剂十二烷基苯磺酸钠、正离子表面活性剂十六烷基三甲基溴化铵、非离子表面活性剂聚乙烯醇或聚乙烯吡咯烷酮中的一种。3.根据权利要求1所述的碱钨青铜纳米棒的制备方法,其特征在于,所述碱金属盐为氯化铯和氯化铷中的至少一种,所述碱钨青铜的分子式为CsxWO3,RbxWO3,CsxRbyWO3,其中0.2≤x≤0.33,0.2≤x+y≤0.33。4.根据权利要求1所述的碱钨青铜纳米棒的制备方法,其特征在于,所述分散剂的加入量为钨粉质量的5%。5.根据权利要求1所...

【专利技术属性】
技术研发人员:吕维忠郑威猛
申请(专利权)人:深圳大学
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1