一种FeS2纳米线的制备方法技术

技术编号:16093568 阅读:22 留言:0更新日期:2017-08-29 19:00
本发明专利技术公开一种FeS2纳米线的制备方法,包括:1)取含Fe

【技术实现步骤摘要】
一种FeS2纳米线的制备方法
本专利技术涉及纳米材料领域,具体涉及FeS2纳米线的制备方法。
技术介绍
FeS2作为一种具有适合禁带宽度和较高光吸收系数的半导体材料,在光电应用方面引起了广泛关注。FeS2投入实际应用受到了其光电转换效率过低的影响。而FeS2将制作出纳米线,当FeS2纳米线被大于能带宽度的光子照射时,光子-空穴对将会产生,如果有适合的表面缺陷态捕获电子或空穴,电子-空穴对的复合将会被阻止,而表面的氧化还原过程得以进行,降低通过多项多相界面导致的复合,从而提高太阳能电池的转化效率。目前,制备FeS2纳米线常采用直接制备法,通过物理或者化学方法Fe与S反应直接合成得到FeS2纳米线,得到FeS2纳米线的存在过度相,导致其光电性能下降。
技术实现思路
有鉴于此,本申请提供了一种FeS2纳米线的制备方法,所述FeS2纳米线纯度高,光电性能好,形貌均匀。为解决以上技术问题,本专利技术提供的技术方案是提供一种FeS2纳米线的制备方法,包括:1)取含Fe3+、OH-的溶液,经水热反应后,分离得到FeOOH;2)所述步骤1)得到的FeOOH加热反应,冷却得到Fe2O3纳米线;3)所述步骤2)得到的Fe2O3纳米线与硫样混合,硫化反应,得到FeS2纳米线。优选的,所述步骤1)还包括取铁盐和强碱溶于水得到所述含Fe3+、OH-的溶液。优选的,所述铁盐为FeCl3和/或Fe(NO3)3。优选的,所述强碱为NaOH和/或KOH。优选的,所述步骤1)中所述水热反应溶剂为H2O。优选的,所述步骤1)中所述水热反应压强为0.5~1.5MPa。优选的,所述步骤1)中所述水热反应温度为100~200℃。优选的,所述步骤1)中所述水热反应在高压反应釜中进行。优选的,所述步骤1)中所述水热反应温度为160℃。优选的,所述步骤1)中所述水热反应时间为2h。优选的,所述含Fe3+、OH-的溶液中Fe3+与OH-摩尔比为1:(1~12)。优选的,所述步骤1)中Fe3+与OH-摩尔比为1:8。优选的,所述步骤1)中分离过程采用离心分离。优选的,所述步骤1)具体为取含Fe3+、OH-的溶液,搅拌,经水热反应后,分离得到FeOOH。优选的,所述搅拌时间为30min。优选的,所述步骤2)中所述加热反应温度为200~400℃。优选的,所述步骤2)中所述加热反应时间为3h。优选的,所述步骤2)具体为:通入H2和Ar混合气体,将所述步骤1)得到的FeOOH加热反应,冷却得到Fe2O3纳米线。优选的,所述H2和Ar混合气体中,Ar含量为93vol%和H2含量为7vol%。优选的,所述步骤3)中所述硫样为硫粉。优选的,所述硫粉为升华硫。优选的,所述步骤3)中所述硫化反应温度小于等于400℃。优选的,所述步骤3)中所述硫化反应温度为200~400℃。优选的,所述步骤3)中所述硫化反应时间为0.5~2h。优选的,所述步骤3)中所述硫化反应在真空管管式炉中进行。优选的,所述硫样中S含量与所述Fe2O3纳米线的摩尔比的大于11:2。本申请与现有技术相比,其详细说明如下:本申请由水热反应合成的FeOOH加热反应得到的Fe2O3纳米线;在水热反应条件下有利于生长出缺陷较少,去取向好,结晶度高的晶体;通过水热反应的反应压强、反应温度和反应时间,以及加热反应的反应温度和反应时间的调节可实现对Fe2O3纳米线理想配比和结构形态的控制;因此,得到的Fe2O3纳米线形貌均匀,分散性较好。再将形貌规整的Fe2O3纳米线硫化处理,与硫样混合硫化反应,得到形貌规整结构均匀的FeS2纳米线,避免了过度相Fe1-xS的出现相位较纯,FeS2纳米线吸收光子后使电子从价带激发到导带,在导带中产生可以自由移动的电子,同时在价带留下可以自由移动的空穴,电子—空穴对的产生提高了半导体内载流子浓度,从而产生光电导信号,光电性能优良。本申请制备方法反应温和,简单易操作,可适用于规模化工业生产。具体实施方式为了使本领域的技术人员更好地理解本申请的技术方案,下面将对本专利技术实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。实施例1一种FeS2纳米线的制备方法,其特征在于,包括:1)取含Fe3+、OH-的溶液,搅拌30min,转移到高压反应釜中水热反应,离心分离得到FeOOH;所述水热反应溶剂为H2O;所述水热反应温度为160℃,所述水热反应压强为0.5~1.5MPa,所述水热反应时间为2h;所述含Fe3+、OH-的溶液中Fe3+与OH-摩尔比为1:8;2)所述步骤2)具体为:通入H2和Ar混合气体,将所述步骤1)得到的FeOOH加热反应,冷却15~30℃,得到Fe2O3纳米线;所述H2和Ar混合气体中,Ar含量为93vol%和H2含量为7vol%;所述加热反应温度为300℃,所述加热反应时间为3h;3)所述步骤2)所述步骤3)具体为将所述步骤2)得到的Fe2O3纳米线与硫样混合,硫化反应,得到FeS2纳米线;所述硫样中含量与所述Fe2O3纳米线的摩尔比的大于11:2;所述硫样为硫粉,所述硫粉为升华硫;所述硫样中S含量与所述Fe2O3纳米线的摩尔比的大于11:2;所述硫化反应温度为200℃,所述硫化反应时间为1h;所述硫化反应在真空管管式炉中进行;其中,所述步骤1)还包括取铁盐和强碱溶于水得到所述含Fe3+、OH-的溶液,所述铁盐为FeCl3和/或Fe(NO3)3,所述强碱为NaOH和/或KOH。实施例2本实施例除下述特征外,其他均与实施例1相同:所述水热反应温度为100℃。实施例3本实施例除下述特征外,其他均与实施例1相同:所述水热反应温度为200℃。实施例4本实施例除下述特征外,其他均与实施例1相同:所述加热反应温度为200℃。实施例5本实施例除下述特征外,其他均与实施例1相同:所述加热反应温度为400℃。实施例6本实施例除下述特征外,其他均与实施例1相同:所述硫化反应温度为300℃。实施例7本实施例除下述特征外,其他均与实施例1相同:所述硫化反应温度为350℃。实施例8本实施例除下述特征外,其他均与实施例1相同:所述硫化反应温度为400℃。实施例9本实施例除下述特征外,其他均与实施例1相同:所述硫化反应时间为0.5h。实施例10本实施例除下述特征外,其他均与实施例1相同:所述硫化反应时间为1.5h。实施例11本实施例除下述特征外,其他均与实施例1相同:所述硫化反应时间为2h。实施例12本实施例除下述特征外,其他均与实施例1相同:所述含Fe3+、OH-的溶液中Fe3+与OH-摩尔比为1:1。实施例13本实施例除下述特征外,其他均与实施例1相同:所述含Fe3+、OH-的溶液中Fe3+与OH-摩尔比为1:12。实施例14制备过程反应温度对FeS2纳米线纯度的影响1、实验样品:实施例1~8所述的FeS2纳米线样品;2、实验方法:测量厚度、宽度、长度,并根据RIR物相方法计算纯度;2、实验结果:见表1。表1反应温度对FeS2纳米线纯度的影响结果实施例15制备过程硫化反应时间对FeS2纳米线纯度的影响1、实验样品:实施例1、9~11所述的本文档来自技高网...

【技术保护点】
一种FeS2纳米线的制备方法,其特征在于,包括:1)取含Fe

【技术特征摘要】
1.一种FeS2纳米线的制备方法,其特征在于,包括:1)取含Fe3+、OH-的溶液,经水热反应后,分离得到FeOOH;2)所述步骤1)得到的FeOOH加热反应,冷却得到Fe2O3纳米线;3)所述步骤2)得到的Fe2O3纳米线与硫样混合,硫化反应,得到FeS2纳米线。2.根据权利要求1所述的制备方法,其特征在于,所述步骤1)还包括取铁盐和强碱溶于水得到所述含Fe3+、OH-的溶液。3.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中所述水热反应温度为100~200℃。4.根据权利要求1所述的制备方法,其特征在于,所述含Fe3+、OH-的溶液中Fe3+与OH-摩尔比为1:(1~12)。5.根据权利要求1所...

【专利技术属性】
技术研发人员:巫江刘德胜余鹏王志明吴杰牛晓滨姬海宁何银春申超群
申请(专利权)人:电子科技大学余鹏
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1