一种双脉冲频率激光分离复合SiC的方法技术

技术编号:15332381 阅读:152 留言:0更新日期:2017-05-16 15:28
本发明专利技术公开了一种双脉冲频率激光分离复合SiC的方法,通过激光对复合SiC圆片进行焦点校准,首先使用第一脉冲频率激光扫描SiC外延片正面内部靠近表面处,形成第一个V槽;然后使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;最后对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。本发明专利技术采用双脉冲频率激光分离复合SiC,降低了激光对划片槽的要求,提高了SiC芯片的良品率;第一脉冲频率激光扫描解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面的金属、介质或复合图形层。

Method for separating composite SiC by double pulse frequency laser

The invention discloses a double frequency laser pulse separation method combined with SiC, through the laser focus calibration of composite SiC wafer, the first use of the first pulse frequency laser scanning SiC epitaxial wafer positive internal part near the surface, the formation of the first V slot; and then use the second pulse frequency laser scanning SiC epitaxial wafer positive internal number of different depth. The formation of a number of V slots; finally, lobes of composite SiC scanned wafer to form a composite SiC chip. The invention adopts double frequency laser pulse separation composite SiC, reduces the requirement of laser scribing groove, improve the yield of SiC chip rate; the first pulse frequency laser scanning solution with laser scribing groove, metal or composite medium brings graphics not to go into the problem, at the same time deepened into the depth of laser pulse frequency second first, the pulse frequency and laser pulse energy is small, can achieve low surface damage, will not damage the metal, medium or composite graphic layer surface.

【技术实现步骤摘要】
一种双脉冲频率激光分离复合SiC的方法
本专利技术涉及一种激光分离复合SiC的方法,尤其涉及一种双脉冲频率激光分离复合SiC的方法。
技术介绍
SiC是第三代半导体材料的核心材料之一,与Si、GaAs相比,SiC具有带隙宽、热导率高、电子饱和迁移率大、化学稳定性好等优点,因此被用于制作高温、高频、抗辐射、大功率和高密度的集成电子器件。利用它的宽禁带特点还可以制作蓝光、绿光和紫外光的发光器件和光电探测器件等。SiC还可以形成自然氧化层,这对制作以MOS为基础的器件十分有利。SiC材料以其宽禁带、高击穿临界电场、高饱和速度、高热导率、小介电常数、高电子迁移率、抗辐射能力强和结实耐磨等特性成为制作高频、大功率、耐高温和抗辐射器件的理想材料。在器件研制方面,碳化硅蓝光LED已经商业化,高温高压二极管已经逐渐走向成熟。在高温半导体器件方面,利用碳化硅材料制作的碳化硅JFET和碳化硅器件可以在无任何冷却散热系统下在高温下正常工作,在航空航天、高温辐射环境、石油勘探等方面发挥了重要作用。SiC材料十分坚硬,在自然界中硬度仅次于金刚石,是一种非常难切割的材料。用砂轮切割必须选用主轴功率较大的设备,刀具的选择也非常有讲究,在切割过程中需要修刀才能保持刀片金刚石的尖锐性,其切割速度最大只能达到4mm/s,对于小芯片的效率极为低下,并且用砂轮切出的SiC芯片会形成一个V角,并且伴随着背面崩边,这样一方面会在后期封装的过程中存在一定尺寸风险,另一方面也会形成SiC芯片失效。用激光进行分离大大缩短了切割速率,最高速率能够达到600mm/s,并且划片槽的尺寸相比砂轮缩短到原来的1/2,相同芯片尺寸下圆片上的数量可以提高30%-50%,大大降低成本,并且通过裂片后,就不存在V角,金属边缘非常齐整。然而,SiC外延片表面的金属层、介质层或者复合图形层会带来激光进不去的问题或者会影响激光进入的深度,为了确保激光进入深度而加大激光频率,又会带来另一个问题,大能量的激光脉冲会带来外延片的表面损伤,破坏表面金属、介质或复合图形,影响产品质量。
技术实现思路
专利技术目的:针对以上问题,本专利技术提出一种双脉冲频率激光分离复合SiC的方法。技术方案:为实现本专利技术的目的,本专利技术所采用的技术方案是:一种双脉冲频率激光分离复合SiC的方法,包括以下步骤:(1)在SiC外延片上完成复合SiC圆片的制备;(2)测量复合SiC圆片切割道区域的厚度;(3)把复合SiC圆片贴在划片膜上,划片膜设于切割片架上;(4)测量复合SiC圆片切割道区域与划片膜的总厚度;(5)用激光对复合SiC圆片进行焦点校准;(6)SiC外延片正面依次是第一层介质、第二层介质和SiC外延片;使用第一脉冲频率激光扫描SiC外延片正面内部靠近表面处,形成第一个V槽;(7)使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;(8)SiC外延片背面依次是SiC外延片、第一层金属、第二层金属、第三层金属、第四层金属和膜;使用第二脉冲频率激光扫描第一层金属和膜之间的位置,形成最后一个V槽;(9)对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。步骤(6)中,使用第一脉冲频率激光扫描SiC外延片正面内部1/10处,形成第一个V槽。步骤(7)中,具体包括以下步骤:使用第二脉冲频率激光扫描SiC外延片正面内部1/4处,形成第二个V槽;使用第二脉冲频率激光扫描SiC外延片正面内部1/2处,形成第三个V槽;使用第二脉冲频率激光扫描SiC外延片正面内部3/4处,形成第四个V槽。第一脉冲频率激光的脉冲频率为20~100KHZ,激光扫描速度为100~400mm/S;第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S。有益效果:本专利技术采用双脉冲频率激光分离复合SiC,降低了激光对划片槽的要求,提高了SiC芯片的良品率和切割效率,同时也提高了SiC圆片单位面积上的芯片数量;第一脉冲频率激光的扫描在SiC外延片表面和两层介质上切开了一定光路宽度,解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面金属、介质或复合图形层;增强第二脉冲频率激光的焦点能量,实现扫面点持续向下灼烧的作用,第二脉冲频率激光能量大,能够切开复合SiC圆片。附图说明图1是激光扫描第一个V槽的位置示意图;图2是激光扫描第二个V槽的位置示意图;图3是激光扫描第三个V槽的位置示意图;图4是激光扫描第四个V槽的位置示意图;图5是激光扫描第五个V槽的位置示意图;图6是裂片后的复合SiC芯片。具体实施方式下面结合附图和实施例对本专利技术的技术方案作进一步的说明。本专利技术所述的双脉冲频率激光分离复合SiC的方法,包括以下步骤:S1:在SiC外延片103上完成复合SiC圆片的制备,复合SiC圆片的总厚度为210~410μm。S2:测量复合SiC圆片切割道区域的厚度。S3:把复合SiC圆片贴在划片膜上,划片膜设于切割片架上,划片膜为蓝膜或UV膜。S4:测量复合SiC圆片切割道区域与划片膜的总厚度。S5:使用激光对圆片进行焦点校准。S6:使用第一脉冲频率激光扫描SiC外延片103正面的两层介质101、102以及SiC外延片103正面内部靠近表面处,可以是正面内部1/10处,形成第一个V槽,如图1所示,示出了此次激光扫描的位置。第一脉冲频率激光的脉冲频率为20~100KHZ,激光扫描速度为100~400mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~105°,第一个V槽在SiC外延片103正面开的宽度为30~80μm,与正面之间的距离为5~20μm。第一脉冲频率激光的扫描在SiC外延片表面和两层介质上切开了一定光路宽度,解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面金属、介质或复合图形层。S7:使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;例如可以使用第二脉冲频率激光扫描SiC外延片103正面内部1/4处,形成第二个V槽,如图2所示,示出了此次激光扫描的位置。第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~85°,第二个V槽在SiC外延片103正面的距离为90~100μm。增强第二脉冲频率激光的焦点能量,实现扫面点持续向下灼烧的作用,第二脉冲频率激光能量大,能够切开复合SiC圆片。S8:使用第二脉冲频率激光扫描SiC外延片103正面内部1/2处,形成第三个V槽,如图3所示,示出了此次激光扫描的位置。第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~87°,第三个V槽在SiC外延片103正面的距离为180~200μm。S9:使用第二脉冲频率激光扫描SiC外延片103正面内部3/4处,形成第四个V槽,如图4所示,示出了此次激光扫描的位置。第二脉冲频率激光的脉冲频率为50~200本文档来自技高网
...
一种双脉冲频率激光分离复合SiC的方法

【技术保护点】
一种双脉冲频率激光分离复合SiC的方法,其特征在于:包括以下步骤:(1)在SiC外延片(103)上完成复合SiC圆片的制备;(2)测量复合SiC圆片切割道区域的厚度;(3)把复合SiC圆片贴在划片膜上,划片膜设于切割片架上;(4)测量复合SiC圆片切割道区域与划片膜的总厚度;(5)用激光对复合SiC圆片进行焦点校准;(6)SiC外延片(103)正面依次是第一层介质(101)、第二层介质(102)和SiC外延片(103);使用第一脉冲频率激光扫描SiC外延片(103)正面内部靠近表面处,形成第一个V槽;(7)使用第二脉冲频率激光扫描SiC外延片(103)正面内部若干不同深度,形成若干V槽;(8)SiC外延片(103)背面依次是SiC外延片(103)、第一层金属(104)、第二层金属(105)、第三层金属(106)、第四层金属(107)和膜(108);使用第二脉冲频率激光扫描第一层金属(104)和膜(108)之间的位置,形成最后一个V槽;(9)对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。

【技术特征摘要】
1.一种双脉冲频率激光分离复合SiC的方法,其特征在于:包括以下步骤:(1)在SiC外延片(103)上完成复合SiC圆片的制备;(2)测量复合SiC圆片切割道区域的厚度;(3)把复合SiC圆片贴在划片膜上,划片膜设于切割片架上;(4)测量复合SiC圆片切割道区域与划片膜的总厚度;(5)用激光对复合SiC圆片进行焦点校准;(6)SiC外延片(103)正面依次是第一层介质(101)、第二层介质(102)和SiC外延片(103);使用第一脉冲频率激光扫描SiC外延片(103)正面内部靠近表面处,形成第一个V槽;(7)使用第二脉冲频率激光扫描SiC外延片(103)正面内部若干不同深度,形成若干V槽;(8)SiC外延片(103)背面依次是SiC外延片(103)、第一层金属(104)、第二层金属(105)、第三层金属(106)、第四层金属(107)和膜(108);使用第二脉冲频率激光扫描第一层金属(104)和膜(108)之间的位置,形成最后一个V槽;(9)对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。2.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:所述步骤(6)中,使用第一脉冲频率激光扫描SiC外延片(103)正面内部1/10处,形成第一个V槽。3.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法...

【专利技术属性】
技术研发人员:刘昊
申请(专利权)人:中国电子科技集团公司第五十五研究所
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1