一种高强韧性无缝钢管及其制造方法技术

技术编号:15031996 阅读:97 留言:0更新日期:2017-04-05 08:41
本发明专利技术公开了一种高强韧性无缝钢管,其化学元素质量百分比为:C:0.1‑0.25%,Si:0.1‑0.5%,Al:0.01‑0.1%,Mn:0.6‑2%,余量为Fe和其他不可避免的杂质;此外还需满足:C+Mn/6≥0.35。本发明专利技术所述的无缝钢管的强度高且韧性良好。本发明专利技术所述的高强韧性无缝钢管的制造方法能够获得强度高且韧性好的无缝钢管。该高强韧性无缝钢管的制造方法能够充分利用轧后余热,从而有效地减少了能耗的浪费,进而降低了工艺制造成本。

【技术实现步骤摘要】

本专利技术涉及一种管件及其制造方法,尤其涉及一种钢管及其制造方法。
技术介绍
由于无缝钢管的产品形态和制造方法的限制,长期以来仅能通过添加合金元素和控制轧后的离线热处理工艺来提升无缝钢管的产品性能。以油井管为例,555MPa(80ksi)以上级别需要通过添加较多的合金元素或离线调质处理才能获得相应的无缝钢管,然而,这样明显会增加无缝钢管的生产制造成本。目前,热轧钢管的常规工艺步骤为轧制后先入管料库,随后再根据需要进行热处理,这种方式不仅造成了钢管轧后余热的浪费(通常轧后钢管温度在900℃以上),同时也带来了工序的复杂化和成本的增加。此外,采用离线热处理也无法利用材料形变后的诱导相变效应来进行强化,根据研究,钢材变形后直接进行在线淬火,其性能会明显高于冷却后再重新加热淬火工艺。如上文所述的,既然本领域内技术人员已经知晓采用在线淬火可以使得无缝钢管获得更好的性能,为何现有技术仍然不采用在线淬火呢?这是因为,无缝钢管不用于一般的热轧钢管,由于其特殊的断面形状,无缝钢管相较于板材,其内应力状态更为复杂,因此若采用在线淬火工艺,一方面很难稳定控制其性能,另一方面容易造成钢管开裂。
技术实现思路
本专利技术的目的在于提供一种高强韧性无缝钢管,该无缝钢管兼具较高的强度和较好的韧性。此外,本专利技术所述的无缝钢管不添加昂贵的合金元素,其合金添加成本经济。为了实现上述目的,本专利技术提出了一种高强韧性无缝钢管,其化学元素质量百分比为:C:0.1-0.25%,Si:0.1-0.5%,Al:0.01-0.1%,Mn:0.6-2%,余量为Fe和其他不可避免的杂质;此外还需满足:C+Mn/6≥0.35。本专利技术所述的高强韧性无缝钢管中的各化学元素的设计原理为:碳:0.1-0.25%C是保证钢管的强度及淬透性的重要元素。当C含量小于0.1%时,一方面钢的强度难以保证,另一方面难以避免先共析铁素体的析出,由此影响钢的抗硫性能。由于在线淬火时材料会受到变形应力及组织应力的双重影响,因此,较之于离线淬火,材料更容易出现裂纹。基于本专利技术的技术方案,将C含量控制在0.1-0.25%的范围之间可以明显地减少无缝钢管的淬火裂纹的形成。硅:0.1-0.5%Si是由脱氧剂而带入钢中的元素。一旦其含量超过0.5%时,会显著地增加钢的冷脆倾向,为此,需要将限制Si含量在0.5%以下。同时,为了保证钢的脱氧效果,需要令钢中的Si含量保持在0.1%以上。铝:0.01-0.1%同样地,Al也是由脱氧剂而带入钢中的元素。少量的Al具有细化钢晶粒的有益作用。可是,如果Al含量过高则会对管坯浇注、热加工等工艺步骤产生不利影响。鉴于此,需要将本专利技术所述的高强韧性无缝钢管中的Al含量设定为0.01-0.1%。锰:0.6-2.0%Mn也是由脱氧剂而带入钢中的元素。Mn具有扩大奥氏体相区,增加钢的淬透性并细化晶粒等有益作用。但是Mn在凝固时容易发生偏析,造成无缝钢管中会出现明显的带状组织。由于带状组织与无缝钢管的基体的硬度和析出相之间存在着明显的差异,继而会影响钢的韧性。因此,应当控制本专利技术所述的高强韧性无缝钢管中Mn含量在2.0%以下。与此同时,为了确保钢的淬透性,还应当使得钢中的Mn含量在0.6%以上。C+Mn/6≥0.35本专利技术所述的无缝钢管的强化效果需要通过固溶强化、析出强化等多种强化的综合效果来实现。在不额外添加其他合金元素的情况下,必须保证C、Mn元素具有一定的含量,以获得足够的强化效果,因此,C和Mn满足上述关系式时能够有效地保证钢的强化效果,从而确保钢具有较高的强韧性。进一步地,本专利技术所述的高强韧性无缝钢管的微观组织以马氏体为主,马氏体的相比例不低于75%。更进一步地,本专利技术所述的高强韧性无缝钢管的微观组织还包括少量铁素体和贝氏体。进一步地,在本专利技术所述的高强韧性无缝钢管中,其他不可避免的杂质中的S≤0.005%,P≤0.02%,O≤0.01%。本专利技术所述的高强韧性无缝钢管中主要不可避免的杂质为S,P和O。其中,P和S均为钢中的有害元素,S对于钢的热加工性、韧性等都会产生不利影响,而P则会对钢的热加工性和韧性产生不利影响,为此需要将S控制得≤0.005%,将P控制得≤0.02%。O是降低韧性的元素,需要其含量控制在0.01%以下。优选地,将O元素的含量控制在0.005%以下。进一步地,本专利技术所述的高强韧性无缝钢管的屈服强度≥555MPa,且其0℃全尺寸冲击功>50J。本专利技术的另一目的在于提供一种高强韧性无缝钢管的制造方法。通过该制造方法能够获得强度高且韧性好的无缝钢管。该高强韧性无缝钢管的制造方法能够充分利用轧后余热,从而有效地减少了能耗的浪费,进而降低了工艺制造的投入成本,此外该制造方法还可以有效避免无缝钢管开裂。为了达到上述专利技术目的,本专利技术所提供的一种高强韧性无缝钢管的制造方法,其依次包括步骤:(1)冶炼并制得管坯;(2)加热管坯,经穿孔、连轧、张力减径或张力定径制得荒管,其中管坯与荒管的横截面面积比大于4.5(需要说明的是,虽然此处仅限定了管坯与荒管的横截面面积比的下限为4.5,而没有限定其上限,然而根据实际设备情况,管坯与荒管的横截面面积比一般是达不到10以上的,也就是说该上限值会受到设备生产能力的限制);(3)在线淬火:淬火开冷温度为850-1100℃,冷却速度20-60℃/s,淬火完成后的钢管洛氏硬度大于40HRC;(4)回火:回火温度为500-700℃。本专利技术所述的高强韧性无缝钢管的制造方法的核心在于在线淬火步骤,如前文所述的,在线淬火是将完成热轧的钢管直接进行淬火,而现有技术中的淬火一般为离线淬火,即充钢管在轧制后会先入管料库,再根据之后的生产需要进行热处理,一方面不仅造成了轧后余热的浪费(通常轧后钢管温度在900℃以上),另一方面热处理工艺又需要消耗大量的热能,这样会大幅度地提高无缝钢管的制造方法的热能消耗。而热轧钢管变形后直接进行快冷淬火后的钢材的综合力学性能要明显高于冷却后再重新进行加热淬火工艺的钢材的综合力学性能。然而无缝钢管采用在线淬火是非常容易出现钢管开裂的,因此本技术方案还严格控制了在线淬火的具体工艺参数,从而使得较之于现有技术,本专利技术的制造方法不仅充分利用了轧后余热,还通过钢管形变诱导相变效益实现了钢管的强化效果,防止了无缝钢管开裂,进而实现了在不额外添加昂贵合金元素的前提下,既提高了钢管的强度,又提升了钢管的韧性。在在线淬火步骤中,如果淬火开冷温度低于850℃,钢管中将会有部分先共析铁素体生成,无法保证淬火后得到需要的微观组织(例如,马氏体组织),因此需要保证钢管温度在850℃以上。同时,将冷却速度控制在20-60℃/s范围之间,其原因在于:冷却速度较慢时,也难以得到需要的微观组织(例如,马氏体组织),反之,冷却速度较快时,由于钢管变形后内应力较大,则容易引起钢管的淬火开裂。此外,在回火步骤中,当回火温度<500℃时,不能够有效地降低钢管的内应力,保证钢管具备足够的韧性,而当回火稳定>700℃时,由于钢管中的微观组织(例如,马氏体组织)的分解和位错密度的速度迅速降低,为此将无法保证钢管所需达到的高强度,故而,将回火温度控制为500-700℃。进一步地,在本专利技术所述的高强韧性无缝钢管的制造方法中,在上述步骤(2)中,将管本文档来自技高网...

【技术保护点】
一种高强韧性无缝钢管,其特征在于,其化学元素质量百分比为:C:0.1‑0.25%,Si:0.1‑0.5%,Al:0.01‑0.1%,Mn:0.6‑2%,余量为Fe和其他不可避免的杂质;此外还需满足:C+Mn/6≥0.35。

【技术特征摘要】
2015.09.24 CN 2015106157379;2016.04.26 CN 201610261.一种高强韧性无缝钢管,其特征在于,其化学元素质量百分比为:C:0.1-0.25%,Si:0.1-0.5%,Al:0.01-0.1%,Mn:0.6-2%,余量为Fe和其他不可避免的杂质;此外还需满足:C+Mn/6≥0.35。2.如权利要求1所述的高强韧性无缝钢管,其特征在于,其微观组织以马氏体为主,马氏体的相比例不低于75%。3.如权利要求2所述的高强韧性无缝钢管,其特征在于,其微观组织还包括少量铁素体和贝氏体。4.如权利要求1所述的高强韧性无缝钢管,其特征在于,其他不可避免的杂质中的S≤0.005%,P≤0.02%,O≤0.01%。5.如权利要求1所述的高强韧性无缝钢管,其特征在于,其...

【专利技术属性】
技术研发人员:刘耀恒张忠铧
申请(专利权)人:宝山钢铁股份有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1