高强度三级渐变刚度板簧根部最大应力特性的仿真计算法制造技术

技术编号:14884402 阅读:70 留言:0更新日期:2017-03-24 23:49
本发明专利技术涉及高强度三级渐变刚度板簧根部最大应力特性的仿真计算法,属于车辆悬架钢板弹簧技术领域。本发明专利技术可根据高强度三级渐变板簧的结构参数,弹性模量,主簧夹紧刚度,主簧和副簧的各级复合夹紧刚度,最大限位挠度,在接触载荷和最大载荷仿真计算的基础上,对主簧及各级副簧的根部最大应力特性进行仿真计算。通过样机试验可知,表明所提供的高强度三级渐变刚度板簧根部最大应力特性的仿真计算法是正确的,为高强度三级渐变刚度板簧的特性仿真验证奠定了可靠的技术基础。利用该方法可提高产品设计水平,确保根部最大应力满足强度设计要求,提高板簧的可靠性和使用寿命及车辆行驶安全性;同时,降低设计和试验费用,加快产品开发速度。

【技术实现步骤摘要】

本专利技术涉及车辆悬架板簧,特别是高强度三级渐变刚度板簧根部最大应力特性的仿真计算法
技术介绍
随着高强度钢板材料的出现,可采用高强度三级渐变板簧,从而满足在不同载荷下的悬架渐变刚度及悬架偏频保持不变的设计要求,进一步提高车辆行驶平顺性,其中,依据最大限位挠度设计值,设置一限位保护装置,防止板簧因受冲击而断裂,提高板簧的可靠性和使用寿命及车辆行驶平顺性和安全性。在最限位挠度下所对应的最大载荷及主簧和各级副簧的根部最大应力,决定板簧的可靠性和使用寿命,因此,对于给定设计机构的高强度三级渐变板簧,是否真正满足可靠性和使用寿命及车辆行驶安全性的设计要求,必须对在最大限位挠度所对应在最大载荷及主簧和各级副簧的根部最大应力进行仿真计算和验证。然而,由于受渐变刚度和挠度计算、接触载荷仿真计算和最大限位挠度所对应的最大载荷的仿真计算等关键问题的制约,据所查资料可知,目前国内外尚未给出可靠的高强度三级渐变刚度板簧根部最大应力特性的仿真计算法。随着车辆行驶速度及其对平顺性要求的不断提高,对车辆悬架系统设计提出了更高要求,因此,必须建立一种精确、可靠的高强度三级渐变刚度板簧根部最大应力特性的仿真计算法,以满足车辆行业快速发展、车辆行驶安全性不断提高及对高强度三级渐变板簧的设计和特性仿真验证的要求,确保在最大限位挠度情况下的根部最大满足板簧可靠性的设计要求,提高板簧的设计水平、质量和性能,提高板簧的可靠性和使用寿命及车辆行驶安全性;同时,降低设计及试验费用,加快产品开发速度。
技术实现思路
针对上述现有技术中存在的缺陷,本专利技术所要解决的技术问题是提供一种简便、可靠的高强度三级渐变刚度板簧夹紧刚度特性的仿真计算方法,其仿真计算流程如图1所示。高强度三级渐变刚度板簧的一半对称结构如图2所示,是由主簧1、第一级副簧2和第二级副簧3和第三级副簧4所组成的,高强度等偏频三级渐变刚度板簧的宽度为b,各片板簧采用高强度钢板,弹性模量为E,骑马螺栓夹紧距的一半为L0。主簧1的片数为n,主簧各片的厚度为hi,一半作用长度LiT,一半夹紧长度Li=LiT-L0/2,i=1,2,…,n;第一级副簧2的片数为n1,第一级副簧各片的厚度为hA1j,一半作用长度LA1jT,一半夹紧长度LA1j=LA1jT-L0/2,j=1,2,…,n1;第二级副簧3的片数为n2,第二级副簧各片的厚度为hA2j,一半作用长度LA2kT,一半夹紧长度LA2k=LA2kT-L0/2,k=1,2,…,n2;第三级副簧4的片数为n3,第三级副簧各片的厚度为hA3l,一半作用长度LA3lT,一半夹紧长度LA3l=LA3lT-L0/2,l=1,2,…,n3。主副簧的总片数N=n+n1+n2+n3,主簧与各级副簧之间共设有三级渐变间隙δMA1、δA12和δA23,即在主簧末片下表面与第一级副簧首片上表面之间设有第一级渐变间隙δMA1;第一级副簧末片下表面与第二级副簧首片上表面之间设有第二级渐变间隙δA12;第二级副簧的末片下表面与第三级副簧首片上表面之间设有第三级渐变间隙δA23。通过主簧和各级副簧初始切线弧高及三级渐变间隙,以满足渐变刚度板簧的各次接触载荷及渐变刚度和悬架系统偏频的设计要求。依据最大限位挠度设计值设置一限位保护装置,防止板簧因受冲击而断裂,提高板簧的可靠性和使用寿命及车辆行驶平顺性和安全性。根据各片板簧的结构参数,弹性模量,主簧和各级副簧的初始切线弧高及最大限位挠度设计值,在接触载荷和限位挠度所对应最大载荷仿真计算的基础上,对高强度三级渐变刚度板簧的主簧和各级副簧的根部最大应力特性进行仿真计算。为解决上述技术问题,本专利技术所提供的高强度三级渐变刚度板簧根部最大应力特性的仿真计算法,其特征在于采用以下仿真计算步骤:(1)高强度三级渐变刚度板簧的主簧及各级副簧的初始曲率半径的计算:I步骤:主簧末片下表面初始曲率半径RM0b的计算根据主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,主簧首片的一半夹紧长度L1,主簧初始切线弧高HgM0,对主簧末片下表面初始曲率半径RM0b进行计算,即II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即III步骤:第一级副簧末片下表面初始曲率半径RA10b的计算根据第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1,及II步骤中计算得到的RA10a,对第一级副簧末片下表面初始曲率半径RA10b进行计算,即IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算根据第二级副簧首片的一半夹紧长度LA21,第二级副簧的初始切线弧高HgA20,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即V步骤:第二级副簧末片下表面初始曲率半径RA20b的计算根据第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2,及IV步骤中计算得到的RA20a,对第二级副簧末片下表面初始曲率半径RA20b进行计算,即VI步骤:第三级副簧首片上表面初始曲率半径RA30a的计算根据第三级副簧首片的一半夹紧长度LA31,第三级副簧的初始切线弧高HgA30,对第三级副簧首片上表面初始曲率半径RA30a,即(2)高强度三级渐变刚度板簧的各次接触载荷的仿真计算:A步骤:不同片数重叠段的等效厚度的计算根据主簧片数n,主簧各片的厚度hi,i=1,2,…,n;第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1;第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2;第三级副簧的片数n3,第三级副簧各片的厚度hA3l,l=1,2,…,n3;主簧与第一级副簧的片数之和N1=n+n1,主簧与第一级副簧和第二级副簧的片数之和N2=n+n1+n2,主副簧的总片数N=n+n1+n2+n3,对各不同片数m重叠段的等效厚度hme的进行计算,m=1,2,…,N,即:其中,主簧根部重叠部分等效厚度hMe,及主簧与各级副簧的根部重叠部分等效厚度hMA1e,hMA2e和hMA3分别为B步骤:第1次开始接触载荷Pk1的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,步骤(1)中计算得到的RM0b和RA10a,A步骤中计算得到的hMe,对第1次开始接触载荷Pk1进行验算,即C步骤:第2次开始接触载荷Pk2的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1;步骤(1)中仿真计算所得到的RA10b和RA20a,A步骤中计算得到hMA1e,及B步骤中仿真计算得到的Pk1,对第2次开始Pk2进行仿真计算,即D步骤:第3次开始接触载荷Pk3的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,步骤(1)中计算得到的RA20b和RA30a,A步骤中计算得到的hMA2e,及C步骤中仿真计算得到的Pk2,对第3次开始Pk3进行仿真计算,即E步骤:第3次开始接触载荷Pw3的仿真计算根据主簧与第一级和第二级副簧的符合加紧刚度KMA2,主副簧的总复合加紧刚度KMA3,D步骤中仿真计算得本文档来自技高网...
高强度三级渐变刚度板簧根部最大应力特性的仿真计算法

【技术保护点】
高强度三级渐变刚度板簧根部最大应力特性的仿真计算法,其中,板簧采用高强度钢板,各片板簧为以中心穿装孔对称的结构,安装夹紧距的一半为骑马螺栓夹紧距的一半;板簧由主簧和三级副簧构成,通过主簧和三级副簧的初始切线弧高及三级渐变间隙,满足板簧接触载荷、渐变刚度、悬架偏频及车辆行驶平顺性的设计要求,即高强度三级渐变板簧;根据各片板簧的结构参数,弹性模量,主簧夹紧刚度,主簧和各级副簧的复合夹紧刚度,初始切线弧高,最大限位挠度,在接触载荷和限位挠度所对应最大载荷仿真计算的基础上,对高强度三级渐变刚度板簧在不同载荷下的根部最大应力特性进行仿真计算,具体仿真计算步骤如下:(1)高强度三级渐变刚度板簧的主簧及各级副簧的初始曲率半径的计算:I步骤:主簧末片下表面初始曲率半径RM0b的计算根据主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,主簧首片的一半夹紧长度L1,主簧初始切线弧高HgM0,对主簧末片下表面初始曲率半径RM0b进行计算,即RM0b=L12+HgM022HgM0+Σi=1nhi;]]>II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即RA10a=LA112+HgA1022HgA10;]]>III步骤:第一级副簧末片下表面初始曲率半径RA10b的计算根据第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1,及II步骤中计算得到的RA10a,对第一级副簧末片下表面初始曲率半径RA10b进行计算,即RA10b=RA10a+Σj=1n1hA1j;]]>IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算根据第二级副簧首片的一半夹紧长度LA21,第二级副簧的初始切线弧高HgA20,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即RA20a=LA212+HgA2022HgA20;]]>V步骤:第二级副簧末片下表面初始曲率半径RA20b的计算根据第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2,及IV步骤中计算得到的RA20a,对第二级副簧末片下表面初始曲率半径RA20b进行计算,即RA20b=RA20a+Σk=1n2hA2k;]]>VI步骤:第三级副簧首片上表面初始曲率半径RA30a的计算根据第三级副簧首片的一半夹紧长度LA31,第三级副簧的初始切线弧高HgA30,对第三级副簧首片上表面初始曲率半径RA30a,即RA30a=LA312+HgA3022HgA30;]]>(2)高强度三级渐变刚度板簧的各次接触载荷的仿真计算:A步骤:不同片数重叠段的等效厚度的计算根据主簧片数n,主簧各片的厚度hi,i=1,2,…,n;第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1;第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2;第三级副簧的片数n3,第三级副簧各片的厚度hA3l,l=1,2,…,n3;主簧与第一级副簧的片数之和N1=n+n1,主簧与第一级副簧和第二级副簧的片数之和N2=n+n1+n2,主副簧的总片数N=n+n1+n2+n3,对各不同片数m重叠段的等效厚度hme的进行计算,m=1,2,…,N,即:hme=Σi=1mhi33,1≤m≤nΣi=1nhi3+Σj=1m-nhA1j33,n+1≤m≤N1Σi=1nhi3+Σj=1n1hA1j3+Σk=1m-N1hA2k33,N1+1≤m≤N2Σi=1nhi3+Σj=1n1hA1j3+Σk=1n2hA2k3+Σl=1m-N2hA2l33,N2+1≤m≤N;]]>其中,主簧根部重叠部分等效厚度hMe,及主簧与各级副簧的根部重叠部分等效厚度hMA1e,hMA2e和hMA3分别为hMe=Σi=1nhi33;hMA1e=hMe3+Σj=1n1hA1j33;]]>hMA2e=hMA1e3+Σk=1n2hA2k33;hMA3e=hMA2e3+Σl=1n3hA3l33;]]>B步骤:第1次开始接触载荷Pk1的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,步骤(1)中计算得到的RM0b和RA10a,A步骤中计算得到的hMe,对第1次开始接触载荷Pk1进行验算,即Pk1=EbhMe3(RA10a-RM0b)6L1RM0bRA10a;]]>C步骤:第2次开始接触载荷Pk2的仿真计算根据高强度三级...

【技术特征摘要】
1.高强度三级渐变刚度板簧根部最大应力特性的仿真计算法,其中,板簧采用高强度钢板,各片板簧为以中心穿装孔对称的结构,安装夹紧距的一半为骑马螺栓夹紧距的一半;板簧由主簧和三级副簧构成,通过主簧和三级副簧的初始切线弧高及三级渐变间隙,满足板簧接触载荷、渐变刚度、悬架偏频及车辆行驶平顺性的设计要求,即高强度三级渐变板簧;根据各片板簧的结构参数,弹性模量,主簧夹紧刚度,主簧和各级副簧的复合夹紧刚度,初始切线弧高,最大限位挠度,在接触载荷和限位挠度所对应最大载荷仿真计算的基础上,对高强度三级渐变刚度板簧在不同载荷下的根部最大应力特性进行仿真计算,具体仿真计算步骤如下:(1)高强度三级渐变刚度板簧的主簧及各级副簧的初始曲率半径的计算:I步骤:主簧末片下表面初始曲率半径RM0b的计算根据主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,主簧首片的一半夹紧长度L1,主簧初始切线弧高HgM0,对主簧末片下表面初始曲率半径RM0b进行计算,即RM0b=L12+HgM022HgM0+Σi=1nhi;]]>II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即RA10a=LA112+HgA1022HgA10;]]>III步骤:第一级副簧末片下表面初始曲率半径RA10b的计算根据第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1,及II步骤中计算得到的RA10a,对第一级副簧末片下表面初始曲率半径RA10b进行计算,即RA10b=RA10a+Σj=1n1hA1j;]]>IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算根据第二级副簧首片的一半夹紧长度LA21,第二级副簧的初始切线弧高HgA20,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即RA20a=LA212+HgA2022HgA20;]]>V步骤:第二级副簧末片下表面初始曲率半径RA20b的计算根据第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2,及IV步骤中计算得到的RA20a,对第二级副簧末片下表面初始曲率半径RA20b进行计算,即RA20b=RA20a+Σk=1n2hA2k;]]>VI步骤:第三级副簧首片上表面初始曲率半径RA30a的计算根据第三级副簧首片的一半夹紧长度LA31,第三级副簧的初始切线弧高HgA30,对第三级副簧首片上表面初始曲率半径RA30a,即RA30a=LA312+HgA3022HgA30;]]>(2)高强度三级渐变刚度板簧的各次接触载荷的仿真计算:A步骤:不同片数重叠段的等效厚度的计算根据主簧片数n,主簧各片的厚度hi,i=1,2,…,n;第一级副簧的片数n1,第一级副簧各片的厚度hA1j,j=1,2,…,n1;第二级副簧的片数n2,第二级副簧各片的厚度hA2k,k=1,2,…,n2;第三级副簧的片数n3,第三级副簧各片的厚度hA3l,l=1,2,…,n3;主簧与第一级副簧的片数之和N1=n+n1,主簧与第一级副簧和第二级副簧的片数之和N2=n+n1+n2,主副簧的总片数N=n+n1+n2+n3,对各不同片数m重叠段的等效厚度hme的进行计算,m=1,2,…,N,即:hme=Σi=1mhi33,1≤m≤nΣi=1nhi3+Σj=1m-nhA1j33,n+1≤m≤N1Σi=1nhi3+Σj=1n1hA1j3+Σk=1m-N1hA2k33,N1+1≤m≤N2Σi=1nhi3+Σj=1n1hA1j3+Σk=1n2hA2k3+Σl=1m-N2hA2l33,N2+1≤m≤N;]]>其中,主簧根部重叠部分等效厚度hMe,及主簧与各级副簧的根部重叠部分等效厚度hMA1e,hMA2e和hMA3分别为hMe=Σi=1nhi33;hMA1e=hMe3+Σj=1n1hA1j33;]]>hMA2e=hMA1e3+Σk=1n2hA2k33;hMA3e=hMA2e3+Σl=1n3hA3l33;]]>B步骤:第1次开始接触载荷Pk1的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,步骤(1)中计算得到的RM0b和RA10a,A步骤中计算得到的hMe,对第1次开始接触载荷Pk1进行验算,即Pk1=EbhMe3(RA10a-RM0b)6L1RM0bRA10a;]]>C步骤:第2次开始接触载荷Pk2的仿真计算根据高强度三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1;步骤(1)中仿真计算所得到的RA10b和RA20a,A步骤中计算得到hMA1e,及B步骤中仿真计算得到的Pk1,对第2次开始Pk2进行仿真计算,即Pk2=Pk1+EbhMA1e3(RA20a-RA10b)6L1RA...

【专利技术属性】
技术研发人员:周长城赵雷雷杨腾飞朱召辉汪晓邵明磊毛少坊
申请(专利权)人:山东理工大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1