当前位置: 首页 > 专利查询>东南大学专利>正文

一种高鲁棒性快恢复超结功率半导体晶体管及其制备方法技术

技术编号:13631047 阅读:77 留言:0更新日期:2016-09-02 11:23
一种高鲁棒性快恢复超结功率半导体晶体管及其制备方法。晶体管含N型漏极,N型漏极上设有N型外延层,再设第一、二条形P型体区、第一P型体区,在第一P型体区内设有至少2个沟槽栅、重掺杂N型源极及第二P型体区,在沟槽栅的上端设有第一场氧化层,重掺杂N型源极位于第一P型体区的上部且限制在沟槽栅之间,第二P型体区位于重掺杂N型源极的下方且通过第一接触金属与源极金属层连接。方法是在衬底生长N型外延层,蚀出深沟槽,制作第一、第二条形P型体区,再制作沟槽栅、第一P型体区、重掺杂N型源极,然后淀积铝形成源极金属层和第一接触金属,最后制作N型漏极。本发明专利技术能有效改善体二极管的反向恢复特性并能提高器件的可靠性。

【技术实现步骤摘要】

本专利技术主要涉及功率半导体器件
,具体涉及一种高鲁棒性快恢复超结功率半导体晶体管及其制备方法,特别适用于手机充电器以及各类电源系统中。
技术介绍
金属氧化物半导体型场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)在功率半导体器件领域有着广泛的应用。为了拓宽其在高压领域的应用,有必要提高其耐压能力,因此需要降低MOSFET漂移区的掺杂浓度,或者增加其厚度,但这会带来导通电阻较高的缺点。为了改进上述缺点,人们提出了超结(Super Junction)MOSFET,其采用交替的p柱和n柱构成器件的漂移层来代替原来的N型外延层,在纵向耐压的同时,利用横向电场进行辅助耗尽,当器件完全耗尽时,漂移区成为本征层,这使得器件的耐压与漂移层掺杂浓度无关,而仅与厚度有关,因此可以适当增加漂移区的掺杂浓度,从而改善耐压与导通电阻之间的折衷关系。为了进一步减小芯片面积,又提出了沟槽超结MOSFET,由于沟槽超结MOSFET在保持高耐压的同时可以具有较低的导通电阻以及小的芯片面积,所以比传统MOSFET在应用中更具有优势,因此广泛应用于开关电源、功率整流的桥式电路中。然而,传统沟槽超级MOSFET的体二极管工作在反向恢复状态时,较大的反向恢复电流流过由P型体区与N型源区所构成的pn结时会产生内建电势,易于导致寄生三极管的开启,损坏晶体管。而为了抑制寄生三极管的开启,需要在p柱上部进行高浓度的P型注入,形成欧姆接触,但这会增加体二极管在正向导通时的空穴注入效率,从而存储大量的载流子,使得反向恢复过程中所需抽取的贮存载流子增加,反向恢复过程时间长,增加了反向恢复的损耗,需要进一步改善。另外,在生产制造的过程中,传统超结沟槽结构极易受到影响,例如在随后的热过程中,p柱和n柱之间的杂质离子发生的扩散运动以及p柱和n柱中的陷阱电荷等,这些因素都会造成超结沟槽MOSFET器件中的电荷分布不平衡,从而对超结沟槽MOSFET器件性能造成很大的损害。因此超结沟槽MOSFET器件的结构中p柱的间距理论上越小越好,以更好地实现电荷补偿,但在实际的工艺制造中p柱的间距受到限制,使得这部分面积无法得到更有效地利用。
技术实现思路
本专利技术针对上述不足,提出了一种能够有效改善体二极管的反向恢复特性并能提高器件可靠性的高鲁棒性快恢复超结功率半导体晶体管及其制备方法。本专利技术提供如下结构技术方案:一种高鲁棒性快恢复超结功率半导体晶体管,包括:N型漏极,在N型漏极上设有N型外延层,在N型外延层内分别设有第一条形P型体区和第二条形P型体区,在N型外延层上方设有第一P型体区且所述第一P型体区自第一条形P型体区延展至第二条形P型体区,在第一P型体区内设有至少2个沟槽栅、重掺杂N型源极及第二P型体区,所述沟槽栅纵向贯穿第一P型体区且所述沟槽栅的下端伸入N型外延层,在所述沟槽栅的上端设有第一场氧化层,所述重掺杂N型源极位于第一P型体区的上部且被限制在所述沟槽栅之间,在重掺杂N型源极、第一P型体区、第一条形P型体区及第二条形P型体区上连接有源极金属层,所述第二P型体区位于所述重掺杂N型源极的下方且通过第一接触金属与源极金属层连接。沟槽栅由多晶硅栅极及包覆在多晶硅栅极外部的栅氧化层组成。本专利技术提供如下方法技术方案:第一步:首先选取N型硅材料作为衬底并外延生长N型外延层;第二步:接着制作高鲁棒性快恢复超结功率半导体晶体管,先利用一块掩膜板在N型外延层上刻蚀出深沟槽;第三步:接下来在深沟槽内填满含P型杂质的硅并进行该杂质离子的扩散,形成位于所述N型外延层内的第一条形P型体区和第二条形P型体区;第四步:接着在第一条形P型体区和第二条形P型体区之间利用一块掩膜板在N型外延层上刻蚀出多个栅沟槽;第五步:接下来在沟槽表面生长栅氧化层,再淀积掺杂的多晶硅以填充所述的栅沟槽,随后通过化学机械抛光(Chemical Mechanical Polishing)或者等离子体刻蚀的步骤回刻所述掺杂的多晶硅栅极;第六步:随后利用一块掩膜版在第一条形P型体区和第二条形P型体区之间采用低能离子注入的方式掺杂硼并退火形成第一P型体区,其中,注入能量介于10~100keV之间,注入剂量介于1e11~1e15cm-2之间;第七步:再利用一块掩膜版选择性注入砷离子并激活,在第一P型体区上部与沟槽栅之间形成重掺杂N型源极,其中,注入能量介于10~100keV之间,注入剂量介于1e14~1e18cm-2之间;第八步:随后在所述N型外延层的上表面淀积一层氧化层作为第一场氧化层,氧化回流
后,利用一块掩膜版,先后进行干氧刻蚀和干硅刻蚀以形成接触孔;第九步:接着选择性注入P型离子并扩散形成第二P型体区,其位于所述第一P型体区中并包围每个接触孔的底部;第十步:再利用一块掩膜版,对第一场氧化层进行干氧刻蚀得到第一条形P型体区、第二条形P型体区、第一P型体区和重掺杂N型源极的上表面,淀积铝形成源极金属层和第一接触金属,最后制作N型漏极。与现有技术相比,本专利技术具有如下优点:1、本专利技术器件利用沟槽栅的隔离作用有效地改善了体二极管的反向恢复特性。由于传统的沟槽超结金属氧化物半导体场效应晶体管的沟槽栅与第一条形P型体区以及第二条形P型体区之间必然存在重掺杂N型源极,因此在第一条形P型体区与第二条形P型体区的上部必须做高浓度的P型注入以形成欧姆接触来抑制此处寄生NPN管的开启。而本专利技术器件由于第一条形P型体区31与重掺杂N型源极7、第二条形P型体区32与重掺杂N型源极7分别被沟槽栅隔离开,即重掺杂N型源极被限制在沟槽栅之间,使得第一条形P型体区31和与其相邻的沟槽栅之间、第二条形P型体区32和与其相邻的沟槽栅之间均没有重掺杂N型源极7,即没有寄生NPN管,因此不需要在第一条形P型体区与第二条形P型体区上部进行高浓度的P型注入以形成欧姆接触,从而降低了第一条形P型体区与第二条形P型体区上部的掺杂浓度,减少了体二极管正向导通模式下注入到N型外延层的空穴数目,减少了体二极管在反向恢复过程中所需抽取的贮存载流子数目(Qrr),缩短了反向恢复时间,改善了体二极管的反向恢复特性,减少了反向恢复损耗。2、本专利技术器件利用沟槽栅的隔离作用有效地提高了器件的可靠性。由于传统的沟槽超结金属氧化物半导体场效应晶体管的沟槽栅与第一条形P型体区以及第二条形P型体区之间必然存在重掺杂N型源极,即存在寄生NPN管,且沟槽超结金属氧化物半导体场效应晶体管的体二极管工作在反向恢复状态下时,空穴电流几乎都从第一条形P型体区与第二条形P型体区流过而到达源极金属层,易造成此处寄生NPN管的开启,器件失效。而本专利技术器件结构的第一条形P型体区31与重掺杂N型源极7、第二条形P型体区32与重掺杂N型源极7分别被沟槽栅隔离开,即重掺杂N型源极被限制在沟槽栅之间,使得现有器件的第一条形P型体区31和与其相邻的沟槽栅之间的重掺杂N型源极、第二条形P型体区32和与其相邻的沟槽栅之间的重掺杂N型源极7均得以去除,即消除了此两处的寄生NPN管,因此有效地提高了器件的可靠性。3、本专利技术器件由于在N型外延层上方、第一条形P型体区与第二条形P型体区之间、
第一P型体区内设有多个沟槽栅,当沟槽本文档来自技高网
...

【技术保护点】
一种高鲁棒性快恢复超结功率半导体晶体管,包括:N型漏极(1),在N型漏极(1)上设有N型外延层(2),在N型外延层(2)内分别设有第一条形P型体区(31)和第二条形P型体区(32),在N型外延层(2)上方设有第一P型体区(5)且所述第一P型体区(5)自第一条形P型体区(31)延展至第二条形P型体区(32),其特征在于,在第一P型体区(5)内设有至少2个沟槽栅、重掺杂N型源极(7)及第二P型体区(6),所述沟槽栅纵向贯穿第一P型体区(5)且所述沟槽栅的下端伸入N型外延层(2),在所述沟槽栅的上端设有第一场氧化层(8),所述重掺杂N型源极(7)位于第一P型体区(5)的上部且被限制在所述沟槽栅之间,在重掺杂N型源极(7)、第一P型体区(5)、第一条形P型体区(31)及第二条形P型体区(32)上连接有源极金属层(9),所述第二P型体区(6)位于所述重掺杂N型源极(7)的下方且通过第一接触金属(11)与源极金属层(9)连接。

【技术特征摘要】
1.一种高鲁棒性快恢复超结功率半导体晶体管,包括:N型漏极(1),在N型漏极(1)上设有N型外延层(2),在N型外延层(2)内分别设有第一条形P型体区(31)和第二条形P型体区(32),在N型外延层(2)上方设有第一P型体区(5)且所述第一P型体区(5)自第一条形P型体区(31)延展至第二条形P型体区(32),其特征在于,在第一P型体区(5)内设有至少2个沟槽栅、重掺杂N型源极(7)及第二P型体区(6),所述沟槽栅纵向贯穿第一P型体区(5)且所述沟槽栅的下端伸入N型外延层(2),在所述沟槽栅的上端设有第一场氧化层(8),所述重掺杂N型源极(7)位于第一P型体区(5)的上部且被限制在所述沟槽栅之间,在重掺杂N型源极(7)、第一P型体区(5)、第一条形P型体区(31)及第二条形P型体区(32)上连接有源极金属层(9),所述第二P型体区(6)位于所述重掺杂N型源极(7)的下方且通过第一接触金属(11)与源极金属层(9)连接。2.根据权利要求1所述的高鲁棒性快恢复超结功率半导体晶体管,其特征在于,所述沟槽栅由多晶硅栅极(10)及包覆在多晶硅栅极(10)外部的栅氧化层(4)组成。3.一种权利要求1所述高鲁棒性快恢复超结功率半导体晶体管的制备方法,其特征在于:第一步:首先选取N型硅材料作为衬底并外延生长N型外延层(2);第二步:接着制作高鲁棒性快恢复超结功率半导体晶体管,先利用一块掩膜板在N型外延层(2)上刻蚀出深沟槽;第三步:接下来在深沟槽内填满含P型杂质的硅并进行该杂质离子的扩散,形成位于所述N型外延层(2...

【专利技术属性】
技术研发人员:祝靖卞方娟杨卓黄智孙伟锋陆生礼时龙兴
申请(专利权)人:东南大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1