一种天然气隧道窑排烟余热回收循环管路热电热水供应系统及其运行方法技术方案

技术编号:10653137 阅读:154 留言:0更新日期:2014-11-19 15:22
一种天然气隧道窑排烟余热回收循环管路热电热水供应系统的运行方法,属于低品位能热回收应用技术领域,本发明专利技术所述天然气隧道窑排烟余热回收循环管路系统热电热水供应系的运行方法:排烟余热流体依次驱动余热烟气锅炉、热水器和贮氢合金反应器;从而对天然气隧道窑排烟余热多级换热,达到梯级利用深度余热回收,为人们日常生活不间断的提供热水和电力,整个回收循环过程不采用任何破坏臭氧层的工作流体,节能环保,高效无污染。

【技术实现步骤摘要】
一种天然气隧道窑排烟余热回收循环管路热电热水供应系统及其运行方法
本专利技术涉及一种天然气隧道窑余热回收循环管路热电热水供应系统的运行方法,属于低品位能余热回收应用

技术介绍
在冶金产业中,海绵铁生产企业属于能耗大户,其主要能耗工序分别是高温隧道窑和铁精粉烘干炉。由于天然气或煤炭费用在企业生产成本中所占的比例很大,因此,节能减排是常抓不懈的技术重点。天然气隧道窑排烟温度一般在180-300℃之间,隧道窑的排烟余热造成的热量损失约占总热量的15—30%,因而对天然气隧道窑排烟余热进行回收,对于节能减排具有重要意义。目前回收余热方法主要是热泵技术,特别是氨吸收式热泵空调和/或热水循环系统和溴化锂吸收式热泵空调和/热水循环系统,但氨具有刺激性气味、对人体具有一定的毒性和可燃性、与空气混合后在一定浓度范围内会发生爆炸。溴化锂吸收式制冷机所使用的溴化锂制冷剂微毒、无爆炸危险,但不适用于75℃以下的低温余热。由于余热温度低于300℃,因而也不适宜用利用水做工质发电,由此导致的结果是近年来,利用有机工质郎肯循环发电余热回收系统也日益引起人们的重视,然后利用制取的电力用于人们的生活需要,如制取生活热水,制冷空调,采暖供热等,但这又存在一个问题是单纯的余热发电的冷凝水热量会白白浪费,且当余热温度较低时,利用发出的电去制取生活热水,制冷空调,采暖供热系统等,面临着能源多次转换过程中的损失大的问题。且上述的若干种回收方法,尤其天然气排烟余热资源进行梯级利用进行深度热回收,满足节能环保,高效完美的为人们生活必需提供生活热水,电力等目的,从而既能响应国家的节能减排政策,又能提高百姓的生活品质。
技术实现思路
为了解决上述缺陷,“安徽省六安市佳瑞粉末冶金有限公司”的科研人员经过经多次实验,最终采取了以下技术方案:一种天然气隧道窑排烟余热回收循环管路热电热水供应系统,主要包括低氢气平衡压储氢合金反应器,高氢气平衡压储氢合金反应器,二者的氢气充放口连接管路上有第零电磁阀,第零电磁阀上并联有旁通抽气泵,控制单元;排烟进口管路,排烟进口管路上配置有温度传感器,用于对排烟进口管路的烟气温度进行检测,天然气隧道窑排烟从排烟进口管路经第一循环风机、第九电磁阀、余热烟气锅炉、热水器,进一步可交替选择性的经:A.第二电磁阀、低氢气平衡压储氢合金反应器、第三电磁阀,流回到排烟出口所处管路排出;B.第五电磁阀、高氢气平衡压储氢合金反应器、第三电磁阀,流回到排烟出口所处管路排出;余热烟气锅炉、膨胀机、冷却器、增压泵依次通过工质管路连接,膨胀机将机械功输出给发电机,冷却器中的冷却流体可交替选择性的:A.经第二循环泵、第十电磁阀、低氢气平衡压储氢合金反应器,重返回到冷却器中进行换热;B.经第二循环泵、第十一电磁阀、高氢气平衡压储氢合金反应器,重返回到冷却器中进行换热;热水器中的水流体可交替选择性的:A.经第三循环泵、第十三电磁阀、高氢气平衡压储氢合金反应器、重返回到热水器中;B.经第三循环泵、第十二电磁阀、低氢气平衡压储氢合金反应器、重返回到热水器中;控制单元与温度传感器相连,对上述所有电磁阀、第一循环风机、第二循环泵、第三循环泵、增压泵的开闭或启停进行控制。一种天然气隧道窑排烟余热回收循环管路热电热水供应系统的运行方式如下:1.步骤A:当温度传感器检测到180-300℃的来流烟气时,在控制单元的控制下,同时启动第一循环风机、第九电磁阀打开、启动第二循环泵、启动增压泵、第二电磁阀打开、第十电磁阀打开、第三电磁阀打开、启动抽气泵、第十三电磁阀打开、启动第三循环泵,其余的电磁阀均关闭;180-300℃的高温区间烟气经第一循环风机、第九电磁阀、余热烟气锅炉,并把其热量传递给余热烟气锅炉,由此高温区间余热流体降温成为100-200℃中温区间烟气,中温区间烟气经热水器,并把其热量传递给热水器,使热水器中的水流体获得一次升温,由此中温区间烟气降温成为60-120℃低温区间烟气,低温区间烟气经第二电磁阀、低氢气平衡压储氢合金反应器,并将其热量传递给低氢气平衡压储氢合金反应器,最终可降低至30℃的烟气经第三电磁阀、排烟所处管路排出;与此所进行的过程是,氢气从低氢气平衡压储氢合金反应器释放出来并经抽气泵排送到高氢气平衡压储氢合金反应器。这样低氢气平衡压储氢合金反应器发生释氢吸热反应,吸收所述低温区间烟气的热量以及冷却器中经第二循环泵、第十电磁阀进入到低氢气平衡压储氢合金反应器中并返回到冷却器中的冷却流体的热量。高氢气平衡压储氢合金反应器发生吸氢放热反应,并将其所放出的热量传递给经第三循环泵、第十三电磁阀,高氢气平衡压储氢合金反应器,并返回到热水器中的水流体,至此热水器中的水流体获得二次升温。2.步骤B:当高氢气平衡压储氢合金反应器的氢气饱和后,控制单元关闭所述抽气泵、第五电磁阀打开、第三电磁阀仍打开、第十一电磁阀打开、第九电磁阀仍打开、第十二电磁阀打开、第零电磁阀打开,第一循环风机和第二循环泵、第三循环泵、以及增压泵仍运转,其余电磁阀均关闭。180-300℃的高温区间烟气经第一循环风机、第九电磁阀、余热烟气锅炉,并把其热量传递给余热烟气锅炉,由此高温区间烟气降温成为100-200℃中温区间烟气,中温区间烟气经热水器,并把其热量传递给热水器,使热水器中的水流体获得一次升温,由此中温区间烟气降温成为60-120℃低温区间烟气,低温区间烟气经第五电磁阀、高氢气平衡压储氢合金反应器,并将其热量传递给高氢气平衡压储氢合金反应器,最终可降低至30℃的烟气经第三电磁阀、排烟所处管路排出;与此所进行的过程是:氢气从高氢气平衡压储氢合金反应器释放出来并经第零电磁阀排送到低氢气平衡压储氢合金反应器。这样高氢气平衡压储氢合金反应器发生释氢吸热反应,吸收低温区间烟气的热量以及冷却器中经第二循环泵、第十一电磁阀进入到高氢气平衡压储氢合金反应器中并返回到冷却器中的冷却流体的热量,低氢气平衡压储氢合金反应器发生吸氢放热反应,并将其所放出的热量传递给经第三循环泵、第十二电磁阀、低氢气压储氢合金反应器,并返回到热水器中的水流体,至此热水器中的水流体获得二次升温。3.在上述步骤A和步骤B的过程中,余热烟气锅炉始终进行的过程是吸收高温区间烟气的热量,并将其工质加热经膨胀机膨胀输出机械功给发电机用于发电,进一步的工质在冷却器中进行冷却,经增压泵进入到余热烟气锅炉继续吸收热量,进入到下一个发电循环。步骤A和步骤B构成为一个工作循环,当低氢气平衡压储氢合金反应器的氢气饱和后,再次通过控制单元对各个电磁阀的开通进行控制,通过低氢气平衡压储氢合金反应器和高氢气平衡压储氢合金反应器交替循环发生吸氢放热反应,进入到下一个工作循环,能够连续二次对热水器中的水流体供应热量,可以显著提高热水器的出水温度。从上述运行方法,可以得到本专利技术相对于现有技术具有如下的有益技术效果可以进一步归纳如下:1.180-300℃天然气隧道窑排烟,经过余热烟气锅炉、热水器、低氢气平衡压储氢合金反应器或高氢气平衡压储氢合金反应器三次换热,能够对其热量进行梯级利用,达到深度热回收的目的,降低经排烟出口所处管路的排出温度可低至30℃。2.热水器经过100-200℃中温区间烟气一次直接加热,能够最大限度提高对热量的回收量,经过低氢气压储本文档来自技高网
...
一种天然气隧道窑排烟余热回收循环管路热电热水供应系统及其运行方法

【技术保护点】
一种天然气隧道窑排烟余热回收循环管路热电热水供应系统的运行方法,其特征在于:所述天然气隧道窑排烟余热回收循环管路热电热水供应系统主要包括:低氢气平衡压储氢合金反应器(1),高氢气平衡压反应器(2),二者的氢气充放口连接管路上有第零电磁阀(4),所述第零电磁阀(4)上并联有旁通抽气泵(22),控制单元(5);排烟进口管路,所述排烟进口管路上配置有温度传感器(6),用于对所述排烟进口管路的烟气温度进行检测,所述天然气隧道窑排烟从排烟进口管路经第一循环风机(21)、第九电磁阀(12)、余热烟气锅炉(8)、热水器(3),进一步可交替选择性的经:A.第二电磁阀(24)、低氢气平衡压储氢合金反应器(1)、第三电磁阀(23),流回到排烟出口所处管路排出;B.第五电磁阀(18)、高氢气平衡压储氢合金反应器(2)、第三电磁阀(23),流回到排烟出口所处管路排出;所述余热烟气锅炉(8)、膨胀机(7)、冷却器(9)、增压泵(10)依次通过工质管路连接,所述膨胀机(7)将机械功输出给发电机(25),所述冷却器(9)中的冷却流体可交替选择性的:A.经第二循环泵(11)、第十电磁阀(19)、所述低氢气平衡压储氢合金反应器(1),重返回到所述冷却器(9)中进行换热;B.经所述第二循环泵(11)、第十一电磁阀(16)、所述高氢气平衡压储氢合金反应器(2),重返回到所述冷却器(9)中进行换热;所述热水器(3)中的水流体可交替选择性的:A.经第三循环泵(13)、第十三电磁阀(15)、所述高氢气平衡压储氢合金反应器(2)、重返回到所述热水器(3)中;B.经所述第三循环泵(13)、第十二电磁阀(20)、低氢气平衡压储氢合金反应器(1)、重返回到所述热水器(3)中;所述控制单元(5)与所述温度传感器(6)相连,对上述所有电磁阀、所述第一循环风机(21)、所述第二循环泵(11)、所述第三循环泵(13)、所述增压泵(10)的开闭或启停进行控制;其运行方法为:步骤A:开始工作时,低氢气平衡压储氢合金反应器(1)的氢气处于饱和,当所述温度传感器(6)检测到180‑300℃的来流烟气时,在所述控制单元(5)的控制下,同时启动所述第一循环风机(21)、所述第九电磁阀(12)打开、启动所述第二循环泵(11)、启动所述增压泵(10)、所述第二电磁阀(24)打开、所述第十电磁阀(19)打开、所述第三电磁阀(23)打开、启动所述抽气泵(22)、所述第十三电磁阀(15)打开、启动所述第三循环泵(13),其余的电磁阀均关闭;180‑300℃的高温区间烟气经所述第一循环风机(21)、所述第九电磁阀(12)、所述余热烟气锅炉(8),并把其热量传递给余热烟气锅炉(8),由此所述高温区间余热流体降温成为100‑200℃中温区间烟气,所述中温区间烟气经所述热水器(3),并把其热量传递给所述热水器(3),使所述热水器(3)中的水流体获得一次升温,由此所述中温区间烟气降温成为60‑120℃低温区间烟气,所述低温区间烟气经所述第二电磁阀(24)、所述低氢气平衡压储氢合金反应器(1),并将其热量传递给所述低氢气平衡压储氢合金反应器(1),最终可降低至30℃的烟气经所述第三电磁阀(23)、排烟所处管路排出;与此所同时进行的过程是,氢气从所述低氢气平衡压储氢合金反应器(1)释放出来并经抽气泵(22)排送到所述高氢气平衡压储氢合金反应器(2),这样所述低氢气平衡压储氢合金反应器(1)发生释氢吸热反应,吸收所述60‑120℃低温区间烟气以及所述冷却器(9)中经所述第二循环泵(11)、所述第十电磁阀(19)进入到所述低氢气平衡压储氢合金反应器(1)中并返回到所述冷却器(9)中的冷却流体的热量,所述高氢气压储氢合金反应器(2)发生吸氢放热反应,并将其所放出的热量传递给经所述第三循环泵(13)、所述第十三电磁阀(15)、所述高氢气压储氢合金反应器(2),并返回到所述热水器(3)中的水流体,至此热水器中(3)的水流体获得二次升温;步骤B:当所述高氢气平衡压储氢合金反应器(2)的氢气饱和后,所述控制单元(5)关闭所述抽气泵(22)、所述第五电磁阀(18)打开、、所述第三电磁阀(23)仍打开、所述第十一电磁阀(16)打开、所述第九电磁阀(12)仍打开、所述第十二电磁阀(20)打开、所述第零电磁阀(4)打开,所述第一循环风机(21)和所述第二循环泵(11)、所述第三循环泵(13)、以及所述增压泵(10)仍运转,其余电磁阀均关闭;与此所同时进行的过程是,氢气从所述高氢气平衡压储氢合金反应器(2)释放出来并经所述第零电磁阀(4)排送到所述低氢气平衡压储氢合金反应器(1),这样所述高氢气平衡压储氢合金反应器(2)发生释氢吸热反应,吸收所述低温区间烟气的热量以及所述冷却器(9)中经所述第二循环泵(11)、所述第十一电磁阀(16)进入到所述...

【技术特征摘要】
1.一种天然气隧道窑排烟余热回收循环管路热电热水供应系统的运行方法,其特征在于:所述天然气隧道窑排烟余热回收循环管路热电热水供应系统主要包括:低氢气平衡压储氢合金反应器(1),高氢气平衡压储氢合金反应器(2),二者的氢气充放口连接管路上有第零电磁阀(4),所述第零电磁阀(4)上并联有旁通抽气泵(22),控制单元(5);排烟进口管路,所述排烟进口管路上配置有温度传感器(6),用于对所述排烟进口管路的烟气温度进行检测,所述天然气隧道窑排烟从排烟进口管路经第一循环风机(21)、第九电磁阀(12)、余热烟气锅炉(8)、热水器(3),进一步可交替选择性的经:A.第二电磁阀(24)、低氢气平衡压储氢合金反应器(1)、第三电磁阀(23),流回到排烟出口所处管路排出;B.第五电磁阀(18)、高氢气平衡压储氢合金反应器(2)、第三电磁阀(23),流回到排烟出口所处管路排出;所述余热烟气锅炉(8)、膨胀机(7)、冷却器(9)、增压泵(10)依次通过工质管路连接,所述膨胀机(7)将机械功输出给发电机(25),所述冷却器(9)中的冷却流体可交替选择性的:A.经第二循环泵(11)、第十电磁阀(19)、所述低氢气平衡压储氢合金反应器(1),重返回到所述冷却器(9)中进行换热;B.经所述第二循环泵(11)、第十一电磁阀(16)、所述高氢气平衡压储氢合金反应器(2),重返回到所述冷却器(9)中进行换热;所述热水器(3)中的水流体可交替选择性的:A.经第三循环泵(13)、第十三电磁阀(15)、所述高氢气平衡压储氢合金反应器(2)、重返回到所述热水器(3)中;B.经所述第三循环泵(13)、第十二电磁阀(20)、低氢气平衡压储氢合金反应器(1)、重返回到所述热水器(3)中;所述控制单元(5)与所述温度传感器(6)相连,对上述所有电磁阀、所述第一循环风机(21)、所述第二循环泵(11)、所述第三循环泵(13)、所述增压泵(10)的开闭或启停进行控制;其运行方法为:步骤A:开始工作时,低氢气平衡压储氢合金反应器(1)的氢气处于饱和,当所述温度传感器(6)检测到180-300℃的来流烟气时,在所述控制单元(5)的控制下,同时启动所述第一循环风机(21)、所述第九电磁阀(12)打开、启动所述第二循环泵(11)、启动所述增压泵(10)、所述第二电磁阀(24)打开、所述第十电磁阀(19)打开、所述第三电磁阀(23)打开、启动所述抽气泵(22)、所述第十三电磁阀(15)打开、启动所述第三循环泵(13),其余的电磁阀均关闭;180-300℃的高温区间烟气经所述第一循环风机(21)、所述第九电磁阀(12)、所述余热烟气锅炉(8),并把其热量传递给余热烟气锅炉(8),由此所述高温区间余热流体降温成为100-200℃中温区间烟气,所述中温区间烟气经所述热水器(3),并把其热量传递给所述热水器(3),使所述热水器(3)中的水流体获得一次升温,由此所述中温区间烟气降温成为60-120℃低温区间烟气,所述低温区间烟气经所述第二电磁阀(24)、所述低氢气平衡压储氢合金反应器(1),并将其热量传递给所述低氢气平衡压储氢合金反应器(1),最终可降低至30℃的烟气经所述第三电磁阀(23)、排烟所处管路排出;与此所同时进行的过程是,氢气从所述低氢气平衡压储氢合金反应器(1)释放出...

【专利技术属性】
技术研发人员:王道成司红康刘传涛邵长虹
申请(专利权)人:安徽省六安市佳瑞粉末冶金有限公司
类型:发明
国别省市:安徽;34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1