基于原子力的角位移传感器制造技术

技术编号:9693254 阅读:110 留言:0更新日期:2014-02-20 21:31
本发明专利技术公开了一种基于原子力的角位移传感器,包括压电陶瓷驱动器底座、压电陶瓷驱动器、原子刻度盘、原子探针、微悬臂、激光器、位敏光电探测器、放大器、反馈控制器和电脑;压电陶瓷驱动器底座设置在机床旋转轴端面中心,压电陶瓷驱动器底座受反馈控制器和电脑控制;原子刻度盘设置在压电陶瓷驱动器上,在刻度盘表面安装三个标记原子;在原子刻度盘上方设置微悬臂,微悬臂末端连接原子探针和反射镜;输出的激光经过反射镜反射后,把携带标记原子起伏位置的光信号输入位敏光电探测器并被放大器放大,输入反馈控制器和电脑存储分析。在机床轴旋转前后,扫描标记原子的位置变化,得到轴的转动角度,可实现角位移的快速、精确测量。

【技术实现步骤摘要】
基于原子力的角位移传感器
本专利技术涉及一种角位移传感器,尤其涉及一种基于原子力的角位移传感器。
技术介绍
机床是机械加工业的基础,是国民经济的基础。机床的转动角度和行程度量的精确性是机床最重要的性能指标,对零件加工具有重大的意义。机床现有的度量包括转动角度和直线行程,度量设备有磁栅、光栅、时栅和原子刻度盘。磁栅是在磁性栅基材料上利用与录音技术相似的方法按一定规则充磁,然后利用磁电原理把其长度或者角度信息读取出来。磁栅尺上相邻栅波的间隔距离称为磁栅的波长,又称为磁栅的节距(栅距)。然而,磁栅中栅距比较大,磁栅分辨率很低。光栅也称衍射光栅,利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的谱线图样,光通过光栅形成单缝衍射和多缝干涉光谱。通过分析移动前后的图样,就得到移动的距离或者角度。光栅的抗干扰能力强,最先进的光栅尺采用细分技术,使得精度有较大提高。然而光栅尺的制造复杂,流行的光栅尺精度只能达到约lum。时栅是最新发展起来的测量方法,它利用时间换空间的原理来测量距离或者角度。因为对匀速运动的物体而言,两点之间的距离或者角度与物体运动时间成正比。时栅需要对参考点的位置信息进行采集,不仅要求采样率高或者运动部件速度低,而且为保证采样精度,要求运动部件速度均匀。因而采样得到的数据量很有限,而且部件运动速度受电网电压波动的影响可能不能保持匀速,这影响了测量的准确性。专利CN97101529.5 (具有0.01纳米分辨率的原子光栅测量方法)采用先扫描探针显微镜获得样品的原子品格图像,将其存入计算机中,然后将该图像转动Φ角度,得到新的图像;然后将两图像叠加成为具有莫尔条纹的原子光栅图像。再以同样方法获得不同位置或适当时间隔后的第二幅原子晶格图像,也将其与旋转后的原子晶格图像相叠加,最后比较两个原子光栅图像的变化,即为测量结果。此测量方法将传统的计量光栅原理与扫描探针显微技术相结合,实现了亚原子分辨率的测量并使测量系统大为简化。由于原子光栅的原子数目很大,所以测量速度慢。申请号200810070359 (大尺度原子栅纳米测量装置)公开了大尺度原子栅纳米测量装置。它包括多级减振系统、基座;设置在基座上的组合减振平台,组合减振平台上设置纳米进给工作台,可移动式纳米进给工作台上设置原子栅,纳米进给工作台带动原子栅移动;扫描隧道显微镜上的探针设置在原子栅上方,探针在压电陶瓷驱动器驱动下移动;信号采集器与扫描隧道显微镜相连接,脉冲电路将模拟信号转换为脉冲信号触发计数器计数,再输入计算机计算处理。针对一般扫描隧道显微镜量程小的缺点,此专利技术的测量装置大大增加了测量量程,在X、Y方向的最大范围为20mm,适应纳米构件加工技术的需要。磁栅、光栅、时栅已经为机械加工行业做出了重大贡献。但他们距离超高精度还比较远。因此,为了提高零件加工精度,开发度量仪器是必须的。
技术实现思路
为了克服现有角度测量仪器的由于电压不稳定、采样点数少、精度比较低等缺点, 本专利技术提供了一种基于原子力的角位移传感器。为了解决上述技术问题,本专利技术采用了如下技术方案:基于原子力的角位移传感器,包括压电陶瓷驱动器底座、压电陶瓷驱动器、原子刻度 盘、原子探针、微悬臂、激光器、位敏光电探测器、放大器、反馈控制器和电脑;所述压电陶瓷驱动器底座设置在机床旋转轴端面中心且带角位移粗测装置便于快速 定位标记原子、随轴旋转,所述压电陶瓷驱动器底座受反馈控制器和电脑控制可在XYZ坐 标系内作纳米直线进给运动;所述压电陶瓷驱动器固定在压电陶瓷驱动器底座上,原子刻度盘设置在压电陶瓷驱动 器上,在原子刻度盘盘面上方固定一不转动的微悬臂,微悬臂的末端安装有原子探针和反 射镜;所述原子刻度盘上呈中心辐射状设置三个标记原子;所述激光器输出的激光照射微悬臂末端上的反射镜后,携带原子探针位置的光信号被 位敏光电探测器接收并输入放大器,放大器放大后的信号输入反馈控制器,由反馈控制器 再输入电脑。作为本专利技术的一种优选方案,三个标记原子组成的三角形三边长近似相等但不完全相等。与现有技术相比,本专利技术具有如下优点:①在机床旋转轴转动前后,分别扫描并对比分析原子刻度盘上原子的排布,得到旋转 轴转动的角度;在原子刻度盘表面适当的位置用原子探针安装几个标记原子和细分技术, 本专利技术就可以实现角位移的快速、精确测量。②测量精度高:由于采用原子分辨率的测量方法,使测量精度达到亚纳米等级。③测量速度快:由于采用标记原子和粗测快速定位标记原子的相互配合,测量过 程只针对标记原子进行测量,而不对其他非标记原子测量,所以速度快,并减少了针尖的磨 损;④测量时对部件没有匀速运动要求,所以采样率可以做得很高,进一步提高了测量精度。【附图说明】图I为基于原子力的角位移传感器的结构示意图。附图中:1一位敏光电探测器;2—激光器;3—微悬臂;4一原子探针;5—标 记原子;6—原子刻度盘;7—压电陶瓷驱动器底座;8—压电陶瓷驱动器;9一电脑; 10—反馈控制器;11 一放大器。【具体实施方式】下面结合附图和【具体实施方式】对本专利技术作进一步说明。如图I所示,基于原子力的角位移传感器,包括压电陶瓷驱动器底座7、压电陶瓷驱动器8、原子刻度盘6、原子探针4、微悬臂3、激光器2、位敏光电探测器1、放大器11、反馈控制器10和电脑9。其中,压电陶瓷驱动器底座7设置在机床旋转轴端面中心且带角位移粗测装置便于快速定位标记原子、随轴旋转,压电陶瓷驱动器底座7受反馈控制器10和电脑9的控制在XYZ坐标系内作纳米直线进给运动;进给行程尽可能长,以提高测量精度。压电陶瓷驱动器8固定在压电陶瓷驱动器底座7上,原子刻度盘6设置在压电陶瓷驱动器8上,随轴旋转。在原子刻度盘6的盘面上方固定一不转动的微悬臂3,微悬臂3末端安装原子探针4和反射镜。原子刻度盘6上呈中心辐射状设置三个标记原子5 (即原子刻度盘6上从中心呈辐射状设置三个标记原子5),三个标记原子5组成的三角形三边长,近似相等但不完全相等,其长度区别可以利用存储在电脑的位置数据计算出,边长尽可能长,以提高测量精度。激光器2输出的激光照射微悬臂3末端上的反射镜后,把携带原子探针4位置的光信号输入位敏光电探测器I并被放大器11放大,输入反馈控制器10和电脑9。在机床轴旋转前后,分别扫描并对比分析原子刻度盘6上标记原子5的排布,得到旋转轴转动的角度。原子刻度盘6表面如果采用细分技术,该角位移传感器可实现角位移的精确测量;如果采用其它辅助的粗测快速定位技术配合只测量标记原子的位置信息,则该角位移传感器可实现角位移的快速测量。最后说明的是,以上实施例仅用以说明本专利技术的技术方案而非限制,尽管参照较佳实施例对本专利技术进行了详细说明,本领域的普通技术人员应当理解,可以对本专利技术的技术方案进行修改或者等同替换,而不脱离本专利技术技术方案的宗旨和范围,其均应涵盖在本专利技术的权利要求范围当中。本文档来自技高网
...

【技术保护点】
基于原子力的角位移传感器,其特征在于:包括压电陶瓷驱动器底座(7)、压电陶瓷驱动器(8)、原子刻度盘(6)、原子探针(4)、微悬臂(3)、激光器(2)、位敏光电探测器(1)、放大器(11)、反馈控制器(10)和电脑(9);所述压电陶瓷驱动器底座(7)设置在机床旋转轴端面中心且带角位移粗测装置便于快速定位标记原子,随轴旋转,所述压电陶瓷驱动器底座(7)受反馈控制器(10)和电脑(9)控制可在XYZ坐标系内作纳米直线进给运动;所述压电陶瓷驱动器(8)固定在压电陶瓷驱动器底座(7)上,原子刻度盘(6)设置在压电陶瓷驱动器(8)上,在原子刻度盘(6)盘面上方固定一不转动的微悬臂(3),微悬臂(3)的末端安装有原子探针(4)和反射镜;所述原子刻度盘(6)上呈中心辐射状设置三个标记原子(5);所述激光器(2)输出的激光照射微悬臂(3)末端上的反射镜后,携带原子探针(4)位置的光信号被位敏光电探测器(1)接收并输入放大器(11),放大器(11)放大后的信号输入反馈控制器(10),由反馈控制器(10)再输入电脑(9)分析。

【技术特征摘要】
1.基于原子力的角位移传感器,其特征在于:包括压电陶瓷驱动器底座(7)、压电陶瓷 驱动器(8)、原子刻度盘(6)、原子探针(4)、微悬臂(3)、激光器(2)、位敏光电探测器(I)、 放大器(11)、反馈控制器(10)和电脑(9);所述压电陶瓷驱动器底座(7)设置在机床旋转轴端面中心且带角位移粗测装置便于快 速定位标记原子,随轴旋转,所述压电陶瓷驱动器底座(7)受反馈控制器(10)和电脑(9)控 制可在XYZ坐标系内作纳米直线进给运动;所述压电陶瓷驱动器(8)固定在压电陶瓷驱动器底座(7)上,原子刻度盘(6)设置在压 电陶瓷驱动...

【专利技术属性】
技术研发人员:古亮陈艳郑永张天恒刘伟蒋东荣刘述喜贺娟
申请(专利权)人:重庆理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1