一种自组装制备碳纳米管宏观体的方法技术

技术编号:8558488 阅读:372 留言:0更新日期:2013-04-10 22:19
本发明专利技术公布一种自组装制备丝带状碳纳米管宏观体的方法,涉及纳米材料制备科学技术领域。先采用湿化学法对长碳纳米管进行氧化截短,得到了高分散性的短碳纳米管中性水溶液,通过对短碳纳米管中性水溶液进行烘干除去溶液水,自组装制备得到丝带状的碳纳米管宏观体。本发明专利技术制备的碳纳米管宏观体,其长度约为几厘米,截面尺寸在微米级。经退火后,该碳纳米管丝带具有良好的导电性,电导率达140s/cm。

【技术实现步骤摘要】
一种自组装制备碳纳米管宏观体的方法
本专利技术涉及纳米材料制备科学
,特别是一种高分散性的短碳纳米管中性水溶液自组装制备丝带状宏观体的方法。
技术介绍
碳纳米管(carbonnanotubes,CNTs)是一种具有一维管状结构的碳纳米材料。碳纳米管有着优异的物理、化学特性,在力学、电学以及电子学等领域具有广阔的应用前景。碳纳米管的性能往往是通过它的某些特定结构形态的宏观体得以体现,而目前所得到的碳纳米管通常都是以粉末的形式存在。这种粉末形态的碳纳米管宏观体通常并不能充分发挥碳纳米管本身的一些优异性能而且还会限制碳纳米管的直接应用。因此,需要将碳纳米管重新组装构建成具有特定结构形态的宏观体,特别是具有一维宏观结构的碳纳米管组装体(如碳纳米管纤维),其表现出非常优越的导电性能等。目前,组装制备一维宏观结构的碳纳米管组装体的常用的方法有干法纺丝法和湿法纺丝法,这两种方法往往需要专门设计的设备装置、操作比较复杂而且处理起来也比较耗时。特别是湿法纺丝法,由于需要制备高分散性的碳纳米管分散液而引入一些其他物质,如表面活性剂、聚合物等,这往往给碳纳米管后续的处理以及应用带来的困难。近来,采用高浓度的氯磺酸来处理碳纳米管得到高浓度的碳纳米管溶液,然后组装成一维宏观结构的碳纳米管纤维,其表现出优越的性能。但是这种方法中使用高浓度的氯磺酸具有强烈的腐蚀性,对仪器设备的要求很高而且操作也较危险。因此,专利技术一种用中性的纯碳纳米管溶液来组装制备一维结构的碳纳米管宏观体具有重要的现实意义。
技术实现思路
本专利技术的目的就是针对现有技术的一些不足,提供了一种高分散性的短碳纳米管中性水溶液自组装制备丝带状宏观体的方法。本专利技术是通过以下技术方案实现的,本专利技术首先利用长碳纳米管表面扭曲的缺陷,采用湿化学法对其进行氧化截短,得到了短碳纳米管中性水溶液,该水溶液具有高分散性、均一、稳定的特点;再利用该短碳纳米管中性水溶液这些特点以及短碳纳米管表面的氧化功能基团间的相互作用,通过烘干完全除去其溶液水,自组装成丝带状的碳纳米管宏观体。经高温退火即可得到具有良好导电性的碳纳米管丝带。本专利技术的组装制备方法包括如下步骤:1.高分散性的短碳纳米管中性水溶液的制备:将原始的长碳纳米管粉末和高锰酸钾固体以一定的配比分别加入到过量的浓硫酸溶液中,得到的反应混合液置于50℃的水浴中持续搅拌反应3h,将反应完的混合液用去离子水稀释,再加入过量双氧水溶液还原除去生成的二氧化锰固体,经过微孔滤膜过滤以及稀盐酸溶液的洗涤后,得到的固体再用去离子水通过高速离心洗涤至上层清液为中性(PH=6-7),然后取下层固体加去离子水并超声分散1h后,进一步经低速离心除去下层少量未充分反应的碳纳米管,取上层均一、稳定的黑色溶液,即得到高分散性的短碳纳米管中性水溶液。2.丝带状的碳纳米管宏观体的自组装制备:将步骤(1)制备的高分散性的短碳纳米管中性水溶液倒入烧杯中并将其直接置于一定温度下的鼓风干燥箱中,烘干完全除去水分后得到丝带状的碳纳米管宏观体。3.高温退火:将步骤(2)得到的丝带状碳纳米管宏观体直接置于石英管式炉中进行高温退火。本专利技术提供的自组装制备丝带状碳纳米管宏观体方法的特点主要有两个方面:第一,首次采用改进的Hummer方法(一种普遍用于制备石墨烯氧化物的传统方法)实现碳纳米管的截短,得到的碳纳米管的长度大部分在200nm以下,而且获得了具有高分散性,高浓度的短碳纳米管的中性水溶液,这种碳纳米管中性水溶液在复合材料的制备、锂离子电池电极材料、生物医学等领域将有广阔的应用前景;第二,利用所得的短碳纳米管中性水溶液的均一、稳定的特点以及短碳纳米管表面功能基团间相互作用,通过简单的低温干燥,实现碳纳米管的自组装,得到了具有丝带状的碳纳米管宏观体。该组装方法安全、简单、易行,是碳纳米管组装的一种新路径,为碳纳米管在微电子器件领域的应用提供了新的途径。附图说明图1为购买的原始碳纳米管的透射电镜照片。图2为不同浓度的碳纳米管中性水溶液的紫外-可见吸收光谱。图3为碳纳米管中性水溶液中短碳纳米管的透射电镜照片。图4(a)(b)分别为碳纳米管丝带的正面和侧面的扫描电镜照片。具体实施方式实例1:将购买的碳纳米管(纯度约95%,来源:成都有机化学有限公司,图1)0.5克以及1.5克的高锰酸钾固体依次加入到盛有15ml的浓硫酸(98%)的烧杯中,充分搅拌均匀后,置于50℃的恒温水浴锅中搅拌处理3小时,待冷却至室温后,用约100ml的去离子水稀释,并不断搅拌,再加入约10ml的30%双氧水溶液,搅拌反应15分钟后,用微孔滤膜过滤。得到的黑色固体直接倒入100ml的4%的稀盐酸中搅拌洗涤,再用微孔滤膜过滤,并用去离子水过滤洗涤,得到的黑色固体再倒入到200ml的去离子水中充分搅拌后,平均倒入4个离心管中用离心机在14000转下离心30分钟,分层后,倒掉上层清液,并继续往离心管中加入适量的去离子水充分搅拌洗涤然后再次离心,分层,倒掉上层清液,如此反复离心洗涤5次,至上层清液呈中性(PH=6~7),最后将得到的离心沉降物收集并加入约200ml的去离子水,在超声波清洗机中超声分散1小时,得到的分散液平均倒入4个离心管中用离心机在3000转下离心30分钟后,小心提取收集上层分散溶液,收集到分散溶液即为高分散的短碳纳米管水溶液,,其溶液呈中性,其浓度约为2.5mg/ml,该不同稀释浓度的溶液的紫外-可见吸收光谱的吸收值与溶液浓度呈很好的线性关系(图2)。其碳纳米管的长度约在200nm以下(图3)。取10ml的上述短碳纳米管中性水溶液倒入到25ml的烧杯中,并将其置于80℃的恒温鼓风干燥箱中干燥24小时,自组装得到的丝带状碳纳米管宏观体即沉积在烧杯的壁上和底部,该碳纳米管丝带约数厘米,截面尺寸为微米级别的。(图4)将上述得到的碳纳米管丝带平放在石英舟中并置于管式炉的石英管中,以20℃/min的升温速率升温至700℃,在此温度下保持3小时后,自然冷却至室温,同时在这整个过程通入流动氩气保护。得到的退火后的碳纳米管丝带仍然保持原有的外观形态,经导电性测试表明,该碳纳米管丝带具有良好的导电性,电导率可达140S/cm。导电性测量的具体步骤如下:将一根长约3cm的碳纳米管丝带的两端用铜箔导电胶分别固定在两个间隔1.5cm的铜电极上,然后用电化学工作站通过两点伏安测试法测得它的导电性。实施例2:短碳纳米管的中性水溶液的制备流程同实施例1。取10ml的短碳纳米管中性水溶液倒入到25ml的烧杯中,并将其置于30℃的恒温鼓风干燥箱中干燥24小时,同样得到自组装得到长约数厘米,截面尺寸为微米级别碳纳米管丝带宏观体。将上述得到的碳纳米管丝带平放在石英舟中并置于管式炉的石英管中,以20℃/min的升温速率升温至700℃,在此温度下保持3小时后,自然冷却至室温,同时在这整个过程通入流动氮气保护。得到的退火后的碳纳米管丝带仍然保持原有的外观形态,经导电性测试表明,该碳纳米管丝带具有良好的导电性,电导率可达120S/cm。实施例3:将购买的碳纳米管(纯度约95%,来源:成都有机化学有限公司,图1)0.5克以及0.5克的高锰酸钾固体依次加入到盛有15ml的浓硫酸(98%)的烧杯中,充分搅拌均匀后,置于50℃的恒温水浴锅中搅拌处理3小时本文档来自技高网...
一种自组装制备碳纳米管宏观体的方法

【技术保护点】
一种高分散性的短碳纳米管中性水溶液自组装制备丝带状宏观体的方法,其特征在于,先采用湿化学法对长碳纳米管进行氧化截短,得到了高分散性的短碳纳米管中性水溶液,通过对短碳纳米管中性水溶液进行烘干除去溶液水,自组装制备得到丝带状的碳纳米管宏观体。

【技术特征摘要】
1.一种高分散性的短碳纳米管中性水溶液自组装制备丝带状宏观体的方法,其特征在于,先采用浓硫酸和高锰酸钾共同对长碳纳米管进行氧化截短,得到了高分散性的短碳纳米管中性水溶液,通过对短碳纳米管中性水溶液进行烘干除去溶液水,自组装制备得到丝带状的碳纳米管宏观体。2.根据权利要求1所述的方法,包括以下步骤:(1)高分散性的短碳纳米管中性水溶液的制备:将原始的长碳纳米管粉末和高锰酸钾固体以1:1~1:3的配比加入到过量的浓硫酸溶液中,在50℃下反应3小时后,依次经水稀释、双氧水还原除去反应生成的二氧化锰固体,再过滤、离心洗涤得到的固体经超声分散后进一步离心取上层分散溶液即得到高分散性的短碳纳米管中性水溶液;(2)丝带状的碳纳米管宏观体的自组装制备:将步骤(1)制备的高分散性的短碳纳米管中性水溶液倒入烧杯中并将其直接置于鼓风干燥箱中烘干,烘干完全除去水分后得到丝带状的碳纳米管宏观体;(3)将步骤(2)得到的丝带状碳纳米管宏观体直接置于...

【专利技术属性】
技术研发人员:官轮辉吴初新郑冬冬
申请(专利权)人:中国科学院福建物质结构研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1