微粒碳化钨粉末制造技术

技术编号:830804 阅读:193 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供了一种微粒碳化钨粉末的制造方法和按这样的方法制造的高性能微粒碳化钨粉末。本发明专利技术的方法由以下工序组成:将在钨酸铵水溶液中混合碳粉而得到的浆体进行低温干燥,制成前体,再将其在惰性气体中还原.碳化得到还原.碳化反应生成物,再在该反应生成物中配合.混合最终实际使全部钨成分成为碳化钨(WC)那样的量的碳粉,并进行碳化。本发明专利技术的微粒碳化钨粉末平均粒径为0.8μm以下,不含超过1μm的粗粒粉末,而且金属杂质少,含有规定量的氮和氧。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及适于以微粒制造高强度硬质合金的微粒碳化钨粉末的制造方法,以及按照这样的方法制造的高性能微粒碳化钨粉末。
技术介绍
历来,各种切削工具和耐磨工具等一般用具有高强度的碳化钨基硬质合金(以下称作硬质合金)制造,而且为确保高强度的目的,在其制造中要使用具有平均粒径0.8μm以下的微粒碳化钨粉末作为原料粉末,这些均已被公众所熟知。另外,作为上述微粒碳化钨粉末的制造方法,例如提出了包括USP4008090号公报和特开昭50-92899号公报中所记载的方法在内的多种方法。另一方面,现状是近年来对于切削工具和耐磨工具强烈要求轻量化、小型化和薄壁化,而且其形状倾向于进一步多样化且复杂化,因此对构成它们的硬质合金要求更加进一步的高强度。
技术实现思路
因此,本专利技术人由上述观点出发,要开发具有更进一步高强度的硬质合金,特别着眼于作为其原料粉末使用的微粒碳化钨粉末进行了研究,结果得到以下(a)~(d)的研究成果(a)在现有技术的微粒碳化钨粉末的制造方法中,有象USP4008090号公报所述那样的方法,即,使用氧化钨粉末作为原料粉末,在其中加入碳粉末并粉碎·混合,然后进行还原·碳化,但在此时,例如若是用球磨机进行粉碎,则不可避免地要由不锈钢容器和硬质合金球混入铁和钴、进而镍和铬等金属杂质,结果使得不能维持99.9%以上的高纯度,同时由于这些金属杂质的影响,使得在还原·碳化反应中局部生成粗粒WC粒子(在将含这种粗粒WC粒子的粉末作为原料使用时,粗粒WC会成为破坏的起点,易于导致强度降低,因而不佳),使得制造高性能的微粒碳化钨粉末变得困难。(b)另外还有特开昭50-92899号公报中所述的方法在仲钨酸铵溶液中加入钴盐得到混合物,再将干燥该混合物得到的前体进行气体碳化,从而得到碳化钨和钴的复合粉末,但是这种方法在碳化反应中或是发生钴烧结现象,或是易于局部生成粗粒WC粒子,而且纳米级的极微细的钴粒子分散在碳化钨颗粒内,在用其制造硬质合金时,会使导热性降低,特别是在作为切削工具使用时,使用时形成的高温导致刀头部强度降低,易于发生缺损或卷刃。(c)在微粒碳化钨粉末的制造方法中,用钨酸铵作为起始原料,在其水溶液中添加·混合碳粉,制成浆体,干燥此浆体制成与碳粉的混合前体,接着将该混合前体在惰性气体气氛中加热,通过混合前体中的碳粉而发生还原·碳化反应,从而制得以碳化钨为主体的还原·碳化反应生成物,再以使最终实际的W∶C=1∶1的比例,将与制造上述浆体时所用的同样的碳粉配合·混合到该还原·碳化反应生成物中,然后若将其在氢气氛下施加碳化处理,就能形成金属杂质少、而且是抑制了粗粒WC粒子生成和含微量氮和氧的高纯度的、微粒的高性能微粒碳化钨粉末。(d)用上述(c)得到的微粒碳化钨粉末作为原料粉末制造的硬质合金,与用现有技术方法得到的平均粒径0.8μm以下的微粒碳化钨粉末或者0.8μm以下的微粒碳化钨粉末与钴的混合粉末制造的硬质合金相比,具有更高的强度,在作为切削工具或耐磨工具使用时,没有刀头部的缺损或卷刃,能够发挥极其优良的性能。本专利技术就是在上述研究结果的基础上完成的,本专利技术具有的特征包括由以下(a)~(e)的工序组成的制造方法,以及按照这样的方法制造的高性能微粒碳化钨粉末(a)向优选纯度99.9质量%以上、更佳99.99质量%以上的钨酸铵水溶液(偏钨酸铵和/或仲钨酸铵,浓度优选为20~70质量%)中,以使上述钨酸铵还原·碳化所需要的比例(优选碳对钨酸铵中的钨的原子比为C/W=3~4),配合·混合优选纯度99.9质量%以上、更佳99.99质量%以上的碳粉(优选碳黑粉末),制成浆体,(b)将上述浆体在低温(优选350℃以下)下干燥,调制成前体,(c)在非氧化性气体气氛(优选常压的氮气和经反应生成的CO气体的混合气体)中,对上述前体施加加热到进行还原·碳化反应的温度(优选900~1600℃,更佳1000~1200℃)的还原·碳化处理,形成实际上不含氧化物的还原·碳化反应生成物,(d)接着,在上述还原·碳化反应生成物中,以将前期还原·碳化反应生成物中的W2C和/或W成分碳化成WC的比例,配合优选纯度99.9质量%以上、更佳99.99质量%以上的碳粉(优选碳黑粉末),并进行搅拌、混合,(e)接着,对混合了上述碳粉的还原·碳化反应生成物,在氢气氛中施加加热到进行碳化反应的温度(优选900~1600℃、更佳1000~1400℃)的碳化处理,由此制造平均粒径0.8μm以下的微粒碳化钨粉末。本专利技术的方法能够提供可制造高强度硬质合金的高纯度微粒碳化钨粉末,因而能使广泛使用上述硬质合金的各种切削工具和耐磨工具等的强度提高。专利技术的详细说明以下说明在本专利技术的方法中,将制造条件规定为如上内容的理由。(a)原料的种类和纯度钨酸铵有偏钨酸铵和仲钨酸铵,均可作为原料使用,但室温下偏钨酸铵对水的溶解度高。因此在使用仲钨酸铵的场合,根据需要使用适当温度的热水。为得到高纯度的WC,它们的纯度(全部金属成分中的钨含量)必须在99.9质量%以上、更佳为99.99质量%以上。另外,因为碳粉必须尽可能地微细分散在钨酸铵水溶液中,所以优选能得到微细粉末的碳黑粉末。由于与上述钨酸铵同样的理由,其纯度优选为99.9质量%以上、更佳为99.99质量%以上。采用本专利技术的方法完全不需要机械的粉碎工序,因此能够避免由粉碎工序混入金属系杂质,从而使制造高纯度碳化钨粉末成为可能。(b)水溶液中钨酸铵的含有比例无论是其含有比例不足20质量%,还是超过70质量%,都难以得到使碳粉均等分散的浆体,因此其含有比例以20~70质量%为佳。(c)浆体中碳粉的比例碳(C)相对于钨酸铵中的钨(W)的比例(C/W)以原子比表示不足3时,会使氧化物残存在还原·碳化反应生成物中,若是象这样在还原·碳化反应生成物中存在氧化物,则会在后步工序的加热碳化处理中和气氛氢反应形成H2O,其作用能促进碳化钨粉末粒的成长,因此平均粒径变大,同时使局部生成粒度长大的WC粒子。另一方面,该比例超过4时,会使还原·碳化反应生成物中的游离碳量变多,因此该比例为3~4为佳。(d)干燥温度浆体的干燥采用在大气中的单纯加热或喷雾干燥等方法进行,但加热温度超过350℃时,钨酸铵分解生成的氧化钨发生晶化,粒子长大,形成微细的还原·碳化反应生成物困难,因此取350℃以下为佳。(e)还原·碳化处理和碳化处理的温度该温度分别不足900℃时,不能使还原反应、碳化反应充分进行,另一方面,温度分别超过1600℃时,在各反应中粒子都急剧成长,不能保持0.8μm以下的平均粒径,因此该温度在各场合都取900~1600℃为佳。而且若是考虑使经济的还原·碳化反应时间和各反应生成物粒子的成长度相适应,则还原·碳化反应和碳化反应温度分别取1000~1200℃和1000~1400℃更佳。(f)WC粒子的平均粒径一般说来,象将平均粒径小的WC粉末作为原料而制造的硬质合金那样,为了具有高强度,本专利技术作为目的的微粒合金用的碳化钨粉末,希望WC粒子的平均粒径为0.8μm以下。(g)WC粒子的最大粒径即使将平均粒径0.2μm以下的微粒碳化钨粉末作为原料来制造硬质合金,而若含粗粒的WC粒子时,则其也会作为破坏的起点起作用,成为强度降低的原因,因此本专利技术作为对象的微粒合金希望WC粒子本文档来自技高网...

【技术保护点】
一种高性能微粒碳化钨粉末,其特征在于,用菲舍尔筛分粒度分析仪法测定,平均粒径为0.8μm以下,按ASTMB430-79测定的粒度分布中,最大粒径为1μm以下,相对于除了非金属成分以外的成分,钨含量为99.9质量%以上,而且碳化钨中的氮含量为0.05~0.30质量%,氧含量为0.10~0.60质量%。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:柳沼裕士森田进
申请(专利权)人:三菱麻铁里亚尔株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利