一种具有超大离子束发散角的离子源制造技术

技术编号:8283545 阅读:347 留言:0更新日期:2013-01-31 23:38
本实用新型专利技术涉及一种用在光学真空镀膜机(离子束辅助沉积设备)或离子束溅射及刻蚀设备中的离子源,特别涉及一种具有超大离子束发散角的离子源。其技术方案是:包括气体放电室,气体放电室的一端设置有绝缘端盖,绝缘端盖外部设置有聚焦磁场产生单元和磁场扫描单元。本实用新型专利技术通过一组正交的磁场,对引入磁场中的离子束方向进行控制,通过设定X、Y方向电磁线圈的电压变化规律,可以实现离子束的空间扫描。调节电磁线圈的电流大小,就可以实现离子束的空间发散角控制。与现有技术相比,本实用新型专利技术的优点是:1.离子源输出的离子束发散角可达180°;2.离子束发散角可以根据实际需要进行调节,可满足不同薄膜沉积过程的需要;3.离子束流密度的均匀性好。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及光学真空镀膜机(离子束辅助沉积设备)、离子束溅射或离子束刻蚀设备中的离子束发射源
,特别涉及一种具有超大离子束发散角的离子源
技术介绍
在光学薄膜领域,离子束辅助沉积(IBAD)是一种将薄膜沉 积与离子轰击融为一体的光学表面镀膜技术,通常是在高真空中利用荷能离子轰击正在沉积的薄膜,从而获得具有特殊效果的膜层。离子束辅助沉积工艺的主要过程是在镀膜前先用一定能量的离子束轰击基底,以净化表面,使表面污染的碳氢化合物分解除去,同时使基底温度升高,提供表面活化以利于薄膜成核。在镀膜过程中,再用适当的荷能离子轰击正在生长的薄膜,从而改变成膜环境。此时,由于外来离子对凝聚中粒子的动量传递,使得膜料粒子在基底表面的迁移率增加,并因此影响粒子的凝结及薄膜生长速率,从而可使薄膜的堆积密度接近于1,大幅度提高了膜层与基底的附着力。除此之外,离子束刻蚀与溅射也是两种重要的技术。离子束刻蚀(或离子束减薄)可以实现样品或零件表面原子级去除、不仅用在化学试样表面分析,光学表面无损伤加工,还用于刻蚀靶材表面,实现溅射沉积。在这些应用过程中,离子源是离子束辅助沉积和离子束刻蚀、溅射沉积的核心部件。离子源的作用是提供具有一定束流强度的离子束,目前己广泛应用于光学、微电子、材料研究及工业生产的各个领域。离子源按其工作物质通常分为气体离子源和金属离子源。气体离子源,按电子发射机制又可以分为冷阴极与热阴极离子源。热阴极离子源中一般采用热灯丝来发射初始电子,采用弧光放电方式产生等离子体。这种放电方式可以产生高密度的等离子体,所以引出离子束流密度比较高,缺点是等离子体污染比较严重,而且一般不宜使用氧化性气体。冷阴极离子源是利用冷阴极潘宁放电管(PIG)产生等离子体,再用多孔栅引出系统从等离子体中引出离子束。该离子源具有结构简单、寿命长、污染小、调节参数少、操作方便等优点,它可以很方便地安装在现有的热蒸发镀膜机内。在蒸发镀膜同时,用离子束轰击,使膜层致密、均匀,提高薄膜器件的机械性能、稳定性及抗腐蚀能力,还可以提高薄膜的抗激光损伤阈值,在较低的基片温度下镀膜,简化了工艺,缩短了镀膜周期,节省了水电消耗。然而,在光学薄膜制备的工业生产中,采用离子束辅助沉积时,为了提高生产效率,往往需要离子束的发散角足够大,从而保证工件架上的所有零件表面都能得到有效的离子束辐照。由于一般镀膜机上安装的工件架都可以旋转,因此常规离子源设计的发散角应该至少满足辐照到工件架尺寸一半的区域。如对于真空室大小为D=500mm的镀膜机来说,若离子束出口至工件架的距离L=400mm,则需要离子源的发散角至少应达到θ=2arctan = 34.7°AL大多数离子源,其输出的离子束本身具有不大的发散角,可以满足小型镀膜机的使用需要。为了获得较高的生产效率,工业生产中最多使用的是中型及大型镀膜机,如工件架直径常常超过1000mm,有的甚至达到2500mm。在这种情况下,镀膜过程中,为了对工件架上的所有零件实现离子束辐照,通常采用的方式为I、多台离子源的组合使用即同时在镀膜室安装多台离子源,每台离子源辐照特定的工件区域,从而保证所有工件都受到离子束轰击。但多个离子源占据空间较大,且各个离子源发出的离子束流密度不均匀,稳定性不好,给使用带来了困难。2、加大离子源的输出口径目前市场上已有商品化的离子源,其输出口径可以达到Φ300以上。因为离子源 本身已经具有一定的发散角(30-60° ),在增加离子束输出口径的情况下,基本可以满足中小型镀膜机的使用。如德国莱宝公司的APS离子源,通过较大的离子输出口径和较大的发散角(约为60° )实现了较大的离子束辅助面积。3、改变离子源栅极形状通常的离子源输出栅极为平面,不利于离子束发散角的扩大。将输出栅加工成球面或椭球面,能够在一定程度上增加离子束输出的发散角。4、使用霍尔离子源霍尔离子源的气体放电室就是整个真空室,真空室内的所有零件均可得到离子束的轰击,几乎不存在发散角的问题,但其离子束输出能量很低(一般为几十eV),且成膜过程中的真空度很低,不能用于高质量光学薄膜的制备。上述各种离子源普遍存在的一个缺点是输出的离子束的发散角均无法超过90°。因为这一角度是离子源的结构决定的,因此几乎不能调整。如此小的发散角,在大型镀膜机中,离子束往往难以辐照到全部零件表面,因此镀膜过程中会存在许多问题。单个离子源的离子束流密度空间分布一般服从余弦分布,因此无论采用单个离子源还是多个组合离子源来实现大的离子束辐照面积,还存在零件表面离子束流密度不均匀的问题,无法实现高质量薄膜的制备。综上所述,目前光学薄膜行业采用的各种辅助用离子源引出的离子束发散角均不超过90°,且这一角度难以调整,同时还存在大面积束流密度不均匀的问题。
技术实现思路
本技术的目的在于,提供一种具有超大离子束发散角的离子源,以克服现有技术中存在的离子束发散角无法超过90°,且发散角难以调整,以及离子束辐照区域内束流密度均匀性不好的问题。为达到上述目的,本技术提供了一种具有超大离子束发散角的离子源,包括气体放电室,气体放电室的一端设置有绝缘端盖,绝缘端盖的中部设置有离子束出孔,其特殊之处在于绝缘端盖外部设置有聚焦磁场产生单元和磁场扫描单元,聚焦磁场产生单元的中部设置有离子束过孔;所述磁场扫描单元包括从下向上依次设置的下盖板、中盖板及上盖板,所述下盖板与中盖板之间设置有一对横向磁极,横向磁极的磁极两端分别连接横向电磁线圈;所述中盖板与上盖板之间设置有一对纵向磁极、纵向磁极的两端分别连接纵向电磁线圈,所述聚焦磁场产生单元和磁场扫描单元的下盖板之间设置有磁屏蔽板,磁屏蔽板的中部设置有离子束过孔;所述下盖板正中心设置有离子束入射孔,中盖板及上盖板正中心设置有离子束出射孔,所述出射孔直径大于下盖板到上盖板的总高度的2倍再加上离子束入射孔直径之和。 上述聚焦磁场产生单元选用永磁铁或电磁线圈。上述横向电磁线圈和纵向电磁线圈分别由一对线圈组成。上述磁场扫描单元的截面为矩形。与现有技术相比,本技术具有以下优点I、离子束具有超大发散角本技术的离子源,采用磁场扫描单元提供的正交磁场(两组磁力线方向相互垂直的磁场)进行离子束的偏转角度调节。输出离子偏转角在0-90°之间,可以根据需要进行调节,即离子源输出的离子束发散角可达180° (半球内);·2、发散角可调本技术中离子源输出的离子束发散角通过利用一组正交的磁场,对引入磁场中的离子束方向进行控制,具体的说就是通过设定的X、Y方向电磁线圈的电压变化方式来实现离子束的空间扫描;调节电磁线圈的电流大小,就可以实现离子束的空间发散角控制,以满足不同薄膜沉积过程的需要;3、离子束流密度的均匀性好由于该离子源采用磁场扫描方式实现了大发散角,即口径为20mm左右的离子束斑在半球空间每点驻留的时间完全一样,因此在半球面上,各点接收的离子辐照是完全一致的。4、结构简单结构简单,而且成本低,系统紧凑,性能良好且输出稳定。整个离子源中有3组磁场,聚焦磁场产生单元可以是永磁铁,也可以是电磁线圈,但是横向磁极和纵向磁极的两端连接的必须是电磁线圈,这样才能通过改变磁场大小实现扫描的目的。5、适用范围广在180°发散角内束流密度均匀性好,且能控制离子本文档来自技高网
...

【技术保护点】
一种具有超大离子束发散角的离子源,包括气体放电室(10),气体放电室(10)的一端设置有绝缘端盖(9),绝缘端盖(9)的中部设置有离子束出孔,其特征在于:绝缘端盖(9)外部设置有聚焦磁场产生单元(1)和磁场扫描单元,聚焦磁场产生单元(1)的中部设置有离子束过孔;所述磁场扫描单元包括从下向上依次设置的下盖板(3)、中盖板(5)及上盖板(7),所述下盖板(3)与中盖板(5)之间设置有一对横向磁极(4),横向磁极(4)的磁极两端分别连接横向电磁线圈(8);所述中盖板(5)与上盖板(7)之间设置有一对纵向磁极(6)、纵向磁极(6)的两端分别连接纵向电磁线圈(11),所述聚焦磁场产生单元(1)和磁场扫描单元的下盖板(3)之间设置有磁屏蔽板(2),磁屏蔽板(2)的中部设置有离子束过孔;所述下盖板(3)正中心设置有离子束入射孔,中盖板(5)及上盖板(7)正中心设置有离子束出射孔,所述离子束出射孔直径大于下盖板(3)到上盖板(7)的总高度的2倍再加上离子束入射孔直径之和。

【技术特征摘要】

【专利技术属性】
技术研发人员:徐均琪苏俊宏惠迎雪杭凌侠弥谦严一心
申请(专利权)人:西安工业大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利