【技术实现步骤摘要】
本专利技术涉及P型GaN与AlGaN半导体材料的外延生长
,尤其涉及一种采用表面活性剂辅助delta掺杂制备P型GaN与AlGaN半导体材料的方法。
技术介绍
三族氮化物(也称作GaN基材料)作为第三代半导体材料,具有禁带宽度大、直接带隙(光电转化效率高)、化学性能稳定、热导能力强以及击穿电压高等特点。基于该类半导体材料可以制作出高光电转换效率、高响应速度的光电子器件(如蓝绿光发光二极管、半导体激光器和紫外光电探测器)以及耐高温、耐高压、适用于大功率的电子器件(如高电子迁移率晶体管和大功率开关场效应晶体管等)。 随着最近三十年人们对三族氮化物材料和器件的不断研究,目前基于三族氮化物的发光器件已经实现了商用化并得到了广泛的应用。但是针对三族氮化物半导体仍有许多基础的材料问题没有很好地解决,而P型掺杂GaN基材料的电导控制就是其中之一。目前,P型宽禁带GaN和AlGaN半导体材料的低掺杂效率依然制约着器件应用的发展。镁作为当前普遍使用且掺杂效率较高的GaN基材料的受主掺杂元素,在材料中有较高的离化能(约为120至180 meV),因此p型GaN基材料的空穴浓度仍处于较 ...
【技术保护点】
一种p型GaN与AlGaN半导体材料的制备方法,其特征在于,包括衬底及由下往上生长在衬底上的缓冲层或过渡层、非故意掺杂层以及受主掺杂层;在该结构的生长过程中,使用氨气或二甲肼氮作为五族氮源;使用三甲基镓或三乙基镓作为三族镓源,使用三甲基铝或三乙基铝作为三族铝源,使用三甲基铟或三乙基铟作为三族铟源,统称为三族金属源;三甲基铟或三乙基铟也作为表面活性剂,在受主掺杂层中使用;具体包括以下步骤:(1)将衬底置于反应腔内;(2)在衬底上采用外延生长方法生长缓冲层或过渡层;缓冲层或过渡层为低温或者高温生长的非故意掺杂三族氮化物或其多元合金材料;在生长过程中,使用氢气、氮气或氢氮混合气体 ...
【技术特征摘要】
1.一种P型GaN与AlGaN半导体材料的制备方法,其特征在于,包括衬底及由下往上生长在衬底上的缓冲层或过渡层、非故意掺杂层以及受主掺杂层;在该结构的生长过程中,使用氨气或二甲肼氮作为五族氮源;使用三甲基镓或三乙基镓作为三族镓源,使用三甲基铝或三乙基铝作为三族铝源,使用三甲基铟或三乙基铟作为三族铟源,统称为三族金属源;三甲基铟或三乙基铟也作为表面活性剂,在受主掺杂层中使用;具体包括以下步骤 (1)将衬底置于反应腔内; (2)在衬底上采用外延生长方法生长缓冲层或过渡层;缓冲层或过渡层为低温或者高温生长的非故意掺杂三族氮化物或其多元合金材料;在生长过程中,使用氢气、氮气或氢氮混合气体作为载流气体,向反应腔内同时通入三族金属源以及五族氮源生长缓冲层或过渡层;其厚度介于5 nm到500 nm之间; (3)在缓冲层或过渡层上采用外延生长方法生长非故意掺杂层;非故意掺杂层为高温生长的非故意掺杂三族氮化物或其多元合金材料;在生长过程中,使用氢气、氮气或氢氮混合气体作为载流气体,向反应腔内同时通入三族金属源以及五族氮源生长非故意掺杂层,其生长温度为1000°C 1200°C ;其厚度介于O. IMm到5 Mm之间; (4)在非故意掺杂层上采用外延生长方法生长受主掺杂层;受主掺杂层为采用表面活性剂辅助delta掺杂方法生长的P型GaN或AlGaN半导体材料,其厚度介于100 nm到1000nm之间,其生长温度为800°C 1180°C ;该生长方法具体包含以下四个步骤 +X+沉积非故意掺杂层使用氢气、氮气或氢氮混合气体作为载流气体,保持五族氮源持续通入,通入三族镓源、三族铝源以及表面活性剂,生长非故意掺杂层;在沉积该层时,通入三甲基铟或三乙基铟表面活性剂辅...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。