本发明专利技术公开了一种基于概率A星与智能体混合的飞行器最优路径确定方法,主要解决路径长度过长以及障碍物对飞行器的威胁值过大的问题。其实现步骤为:(1)生成障碍物地形地图;(2)在障碍物地形地图中设置飞行器的起始点SP和终止点EP;(3)根据飞行器的起始点SP和终止点EP的位置,用概率A星算法对飞行器进行全局路径规划;(4)用智能体算法对所规划出的路径进行局部优化。本发明专利技术具有路径长度短,威胁值低的优点,可用于飞行器最优路径的确定。
【技术实现步骤摘要】
本专利技术属于空间数据处理
,特别涉及飞行器的路径优化,该方法可用于开展智能导航,无人驾驶等领域的路径规划。
技术介绍
飞行器是依靠地形信息和敌情信息来进行路径规划,即在一定约束条件下,飞行器从起始点到终止点,搜寻能优先满足特定目的最优的飞行路径,其中飞行路径用一系列航迹点表示。路径规划在寻找最优路径的过程中要平衡路径长度以及对飞行器的威胁值,所以路径规划在人工智能,统筹规划,机器学习和空间数据库技术中起着很重要的作用。 随着军事技术、实际战争需求的不断发展,飞行器的路径规划建模从简单单一的系统发展到复杂多变的系统。飞行器的路径规划问题呈现出实时性、多维性、不确定和非线性等复杂特征。建立在传统系统下的模型,仍习惯于从障碍物地形信息已知且不会改变的角度出发,以静态、理想化为主的方式来研究飞行器路径规划的建模问题,忽视了从实际的角度来看待整个飞行过程。目前大多数路径规划方法对于复杂的贴近真实环境的障碍物地形场景效果较差。这是因为传统算法采用的是简单的静态的规划方法,即在实际飞行器在飞行之前根据障碍物地形场景来进行路径规划,在飞行过程中路径不可改变以及障碍物符合特定规律,这与真实场景的差距较大。显然这种规划方法将障碍物地形场景进行了理想化的处理,而实际上飞行场景的地形信息是无规律无规则的。目前路径规划的主要有三类技术可以解决这个路径规划问题1.传统算法,如栅格法,Voronoi图法;2.智能优化算法,如遗传算法;3.其他算法,如动态规划算法。传统算法是根据经典的数学方程式进行计算,较一般地理想的障碍物地图用此类算法计算出的路径在全局上较优,但对障碍物的要求较为理想化,针对实际地形地图的规划效果很大程度受到算法本身和障碍物理想化程度的影响。一般来说,真实的地图场景信息内容较为复杂,包含大量的山脉,雷雨区域,以及防空阵地等诸多因素,此外雷雨区域是可移动的并且防空阵地可能会突然出现增减,这都对路径规划的实时性提出了很高的要求。对于规则形状的障碍物地形采用传统算法如VOTonoi图法可以得到较为理想的结果,但如果出现不规则形状的障碍物地形,障碍物重叠或者动态地图的情况下,Voronoi图法便无法得到有效的路径。智能优化算法,如遗传算法是在1975年由John Holland提出,是一类借鉴生物界的进化规律,即适者生存,优胜劣汰遗传机制演化而来的随机化搜索方法,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。在鲁棒性上较传统算法有了明显的提高,对障碍物理想化的依赖程度减低,但智能优化算法的计算时间普遍过长,由雷达方程得出的障碍物对飞行器的威胁值较大,并无法适应动的,可变的更接近真实情景的地图进行路径规划。对于其他算法,如动态规划算法,由于算法自身限制,在局部路径上可以达到最优以及适应动态地图,但在全局规划上无法保证,可能会出现计算不出总体的路径,路径结果不稳定。
技术实现思路
本专利技术的目的在于针对上述已有技术的不足,提出一种基于概率A星与智能体混合的飞行器最优路径确定方法,以提高对于多种不同地图规划出的路径的正确度,同时提高对于同一幅地图进行多次路径规划的路线的稳定性,增强对不同地图路径规划的鲁棒性。实现本专利技术目的的技术思路是将所需的各类数据进行预处理,通过概率A星算法得出其全局路径规划的路径,对符合力学原理设置下的飞行器在飞行过程中,通过智能体算法对概率A星算法所规划出的路径进行局部优化,直到飞行器飞到终止点为止,从而完成障碍物地形地图中的路径规划的整个过程,其具体步骤包括如下I、一种基于概率A星与智能体混合的飞行器最优路径确定方法,包括如下步骤 I)生成障碍物地形地图设Pi,Qi为飞行器需绕过的每一个障碍物的起点和终点的坐标,分别对Pi点和Qi点做垂直于X轴和Y轴的直线,四条直线围成一个矩形,表示障碍物区域Ti,其中i为障碍物区域个数;2)在步骤(I)得到的障碍物地形地图中设置飞行器的起始点SP和终止点EP ;3)根据飞行器的起始点SP和终止点EP的位置,用概率A星算法对飞行器进行全局路径规划;4)用智能体算法对步骤(3)所规划出的路径进行局部优化4a)初始化飞行器行为决策权重将飞行器向父节点Dj飞行的行为决策权重记作Rl ;将飞行器向右方飞行的行为决策权重记作R2 ;将飞行器向左方飞行的行为决策权重记作R3 ;将飞行器保持当前航向飞行的行为决策权重记作R4,并设定飞行器在SP点未开始飞行时的初值为R1=0. 5,R2=0. 4,R3=0. 4,R4=0. 3 ;4b)飞行器根据周围环境的变化进行相应的处理若飞行器的前方和左右两侧均无障碍物,则比较Rl、R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和右侧无障碍物,左侧有障碍物,则比较Rl和R2数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和左侧无障碍物,右侧有障碍物,则比较Rl和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方无障碍物,两侧均有障碍物,则飞行器按照R4所对应的方向飞行;若飞行器前方有障碍物,两侧均无障碍物,则比较R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和左侧有障碍物,则飞行器按照R2所对应的方向飞行;若飞行器前方和右侧有障碍物,则飞行器按照R3所对应的行为飞行;4c)修改飞行器行为决策权重将飞行器在步骤(4b)中选择的方向所对应的行为决策权重值加O. 03,其他行为决策权重值减O. 01,其中设定行为决策权重值的上限为O. 7,下限为O. 2 ;4d)判断飞行器与终止点EP的距离是否小于2,若距离小于2,则停止局部路径优化,将局部优化过的路径作为飞行器的最优路径;否则返回步骤(4b)和(4c)继续进行局部路径优化。本专利技术与现有的技术相比具有以下优点第一,本专利技术与传统算法相比,由于采用概率A星,对飞行器进行路径规划所得出的路径在长度上有所缩短; 第二,本专利技术与传统算法相比,飞行器在飞行过程中能够根据周围环境的变化,对已规划出的全局路径利用行为决策权重机制进行局部路径优化,缩短了路径长度,并在此过程中降低了障碍物对飞行器的威胁值;第三,本专利技术相比其他算法,由于不对障碍物地形地图进行任何理想化处理,克服了对于不同障碍物地形地图所规划出的路径的鲁棒性不足的缺点。附图说明图I为本专利技术方法的流程图;图2为本专利技术利用概率A星算法进行全局路径规划的子流程图;图3为本专利技术对概率A星所规划出的路径进行局部优化的子流程图;图4为本专利技术实验的障碍物地形地图;图5为本专利技术与传统A星算法规划出的路径对比图。具体实施例方式下面结合附图I对本专利技术的步骤作进一步的详细描述。步骤I.生成障碍物地形地图设Pi,Qi为飞行器需绕过的每一个障碍物的起点和终点的坐标,分别对Pi点和Qi点做垂直于X轴和Y轴的直线,四条直线围成一个矩形,表示障碍物区域Ti,其中i为障碍物区域个数。步骤2.在障碍物地形地图中设置飞行器的起始点SP和终止点EP。步骤3.根据步骤2中飞行器的起始点SP和终止点EP的位置,利用概率A星算法进行全局路径规划。参照图2,本步骤本文档来自技高网...
【技术保护点】
一种基于概率A星与智能体混合的飞行器最优路径确定方法,包括如下步骤:1)生成障碍物地形地图:设pi,qi为飞行器需绕过的每一个障碍物的起点和终点的坐标,分别对pi点和qi点做垂直于X轴和Y轴的直线,四条直线围成一个矩形,表示障碍物区域Ti,其中i为障碍物区域个数;2)在步骤(1)得到的障碍物地形地图中设置飞行器的起始点SP和终止点EP;3)根据飞行器的起始点SP和终止点EP的位置,用概率A星算法对飞行器进行全局路径规划;4)用智能体算法对步骤(3)所规划出的路径进行局部优化:4a)初始化飞行器行为决策权重:将飞行器向父节点Dj飞行的行为决策权重记作R1;将飞行器向右方飞行的行为决策权重记作R2;将飞行器向左方飞行的行为决策权重记作R3;将飞行器保持当前航向飞行的行为决策权重记作R4,并设定飞行器在SP点未开始飞行时的初值为:R1=0.5,R2=0.4,R3=0.4,R4=0.3;4b)飞行器根据周围环境的变化进行相应的处理:若飞行器的前方和左右两侧均无障碍物,则比较R1、R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和右侧无障碍物,左侧有障碍物,则比较R1和R2数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和左侧无障碍物,右侧有障碍物,则比较R1和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方无障碍物,两侧均有障碍物,则飞行器按照R4所对应的方向飞行;若飞行器前方有障碍物,两侧均无障碍物,则比较R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行;若飞行器前方和左侧有障碍物,则飞行器按照R2所对应的方向飞行;若飞行器前方和右侧有障碍物,则飞行器按照R3所对应的行为飞行;4c)修改飞行器行为决策权重:将飞行器在步骤(4b)中选择的方向所对应的行为决策权重值加0.03,其他行为决策权重值减0.01,其中设定行为决策权重值的上限为0.7,下限为0.2;4d)判断飞行器与终止点EP的距离是否小于2,若距离小于2,则停止局部路径优化,将智能体局部优化过的路径作为飞行器的最优路径;否则返回步骤(4b)和(4c)继续进行局部路径优化。...
【技术特征摘要】
1.一种基于概率A星与智能体混合的飞行器最优路径确定方法,包括如下步骤 1)生成障碍物地形地图 设Pi, Qi为飞行器需绕过的每一个障碍物的起点和终点的坐标,分别对Pi点和Qi点做垂直于X轴和Y轴的直线,四条直线围成一个矩形,表示 障碍物区域Ti,其中i为障碍物区域个数; 2)在步骤(I)得到的障碍物地形地图中设置飞行器的起始点SP和终止点EP; 3)根据飞行器的起始点SP和终止点EP的位置,用概率A星算法对飞行器进行全局路径规划; 4)用智能体算法对步骤(3)所规划出的路径进行局部优化 4a)初始化飞行器行为决策权重 将飞行器向父节点Dj飞行的行为决策权重记作Rl ;将飞行器向右方飞行的行为决策权重记作R2 ;将飞行器向左方飞行的行为决策权重记作R3 ;将飞行器保持当前航向飞行的行为决策权重记作R4,并设定飞行器在SP点未开始飞行时的初值为R1=0. 5,R2=0. 4,R3=0. 4,R4=0. 3 ; 4b)飞行器根据周围环境的变化进行相应的处理 若飞行器的前方和左右两侧均无障碍物,则比较Rl、R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行; 若飞行器前方和右侧无障碍物,左侧有障碍物,则比较Rl和R2数值的大小,飞行器按照其中最大值所对应的方向飞行; 若飞行器前方和左侧无障碍物,右侧有障碍物,则比较Rl和R3数值的大小,飞行器按照其中最大值所对应的方向飞行; 若飞行器前方无障碍物,两侧均有障碍物,则飞行器按照R4所对应的方向飞行; 若飞行器前方有障碍物,两侧均无障碍物,则比较R2和R3数值的大小,飞行器按照其中最大值所对应的方向飞行; 若飞行器前方和左侧有障碍物,则飞行器按照R2所对应的方向飞行; 若飞行器前方和右侧有障碍物,则飞行器按照R3所对应的行为飞行; 4c)修改飞行器行为决策权重 将飞行器在步骤(4b)中选择的方向所对应的行为决策权重值加O. 03,其他行为决策权重值减O. 01,其中设定行为决策权重值的上限为O. 7,下限为O. 2 ; 4d)判断飞行器与终止点EP的距离是否小于2,若距离小于2,则停止局部路径优化,将智能体局部优化过的路径作为飞行器的最优路径;否则返回步骤(4b)和(4c)继续进行局部路径优化。2.根据权利要求I所述的方法,其中步骤(3)所述的根据飞行器的起始点SP和终止点EP的位置,用概率A星算法对飞行器进行全局路径规划,按如下步骤进行 3a)将障碍物地形地图划分为网格地图 3al)生成含有100X100个小网格...
【专利技术属性】
技术研发人员:于昕,花德隆,焦李成,吴建设,尚荣华,李阳阳,朱振强,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。