荷负电无机-有机杂化膜的制备方法技术

技术编号:708404 阅读:266 留言:0更新日期:2012-04-11 18:40
本发明专利技术荷负电无机-有机杂化膜的制备方法,特征是以化学式为[R↑[1](SH)R↑[2]]↓[p]SiX↓[4-p]分子链中含巯基的烷氧基硅烷或卤硅烷为原料,溶于溶剂中后,加入水和催化剂,搅拌反应;将所得溶胶在无机基体上涂膜,得到的膜在室温干燥,然后升温到80-200℃,常压或减压条件保温1-12小时;将生成物浸入氧化剂水溶液中,在20-80℃保持12-50小时,即得到相应的荷负电无机-有机杂化膜;本发明专利技术制备杂化膜的方法,制备步骤简单,杂化膜中的无机-有机成分相容性较好。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术属于膜
,具体涉及采用溶胶-凝胶反应和氧化反应制备荷负电无机-有机杂化膜。
技术介绍
由于无机材料具有非常好的化学和热稳定性,70年代末,无机材料应用于膜的研究开始引起人们的广泛关注。但是无机膜的一个很重要的缺陷是它很难荷上负电荷,所以在液体分离过程(微滤、超滤、纳滤)很容易受到料液中带负电的胶体、鞣质和生物大分子的污染而使膜通量下降,使用寿命缩短。有机材料制备的膜虽容易荷电,但机械强度不好,化学稳定性差,大多不耐高温、酸碱和有机溶剂等。为了弥补现有膜材料性能的不足,已有研究者尝试将有机材料易于荷电的优点结合到无机材料中,制备出荷电无机-有机杂化材料或膜。美国专利US 6,201,051报道了多官能团有机硅或B,Al,Si,Sn,Ti,Zr的醇盐的溶胶-凝胶反应产物与导电有机高分子混合,或B,Al,In,Si,Sn,Ti,Zr,的氧化物与导电有机高分子混合,得到荷电无机-有机杂化材料,该材料可用作涂层。但由于这种方法采用机械共混步骤,没有进行化学交联,体系中无机组分和有机荷电组分之间没有强的化学键作用,相容性相对较差。美国专利US 5,371,154报道了结构为Y3Si-X-SiY3的化合物(其中X为含有苯撑、萘、蒽、二苯甲基、芳基等基团的有机基团,Y为烷氧基团或卤原子)溶胶-凝胶反应,生成含有机桥基的聚硅氧烷,该聚硅氧烷有机成份X在氯磺酸、磺酸、三氧化硫或溴和氢氧化钾的混合水溶液等试剂的作用下磺化或羧化,得到可用作固体酸性催化剂的荷电杂化物。但该方法所用原料Y3Si-X-SiY3制备较为困难,磺化或羧化步骤所用的强酸性或强碱性试剂对聚硅氧烷的结构会造成一定的破坏,如发生断链,重排等反应。《电化学学报》(Electrochimica Acta,1998,43(10-11),1301-1306页)报道了将含酸性基团烷氧基硅烷与含环氧基、含双键的烷氧基硅烷混合进行溶胶-凝胶反应,生成物进一步进行紫外交联或热交联,得到荷负电无机-有机杂化材料,用该材料做成的膜在电致变色示窗、电池和燃料电池等方面有应用前景。该制备方法步骤较为繁杂,且其原料必须含有环氧或双键等可进一步化学交联的基团,所以可采用该方法的原料种类有限。
技术实现思路
本专利技术提出一种利用溶胶-凝胶反应和氧化反应制备荷负电无机-有机杂化膜的方法,以克服现有技术的上述缺陷。本专利技术的荷负电无机-有机杂化膜的制备方法,特征在于以分子链中含巯基的烷氧基硅烷或卤硅烷为原料,溶于溶剂中后,加入水和催化剂,在10-60℃搅拌反应;上述各组份合适的摩尔比为硅烷∶溶剂∶水∶催化剂=1∶3-15∶3-10∶0.001-0.01;将所得的溶胶在无机基体上涂膜;膜片在室温、相对湿度60-90%的环境下干燥至形成均匀稳定的凝胶层;再以5-20℃/小时的速度从室温升温到80-200℃,常压或减压条件下保温1-12小时;最后对生成物进行氧化反应,得到荷负电无机-有机杂化膜;所述分子链中含巯基的烷氧基硅烷或卤硅烷,其化学式可表达为PSiX4-p,式中R1和R2分别为含0-10和1-10个碳的烷基或芳基;X包括1-5个碳的烷氧基团和卤素,一般指Cl;P的值为1-3;所述对生成物进行氧化反应,是指将生成物浸入pH=4-7的1-20%的氧化剂的水溶液中,在20-80℃保持12-50小时;所述氧化剂包括过氧化氢、高锰酸钾、重铬酸钾或次氯酸。所述溶剂种类无需特别限定,常用的包括甲醇、乙醇、丙酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氯化碳、氯仿、苯或甲苯。所述催化剂包括盐酸、硫酸、三氟乙酸、氢氧化钠、氯化铵或氟化铵。所述无机基体包括Al2O3多孔陶瓷、Al2O3微滤或超滤膜、二氧化硅或二氧化钛。所述涂膜包括刮膜、喷洒、浸渍、流动或旋转涂覆。本专利技术首次以分子链中含巯基的烷氧基硅烷或卤硅烷为原料,先经溶胶-凝胶反应、再进行氧化反应制得荷负电无机-有机杂化膜材料。与美国专利US 6,201,051采取将无机和有机成分进行机械共混的步骤制备的荷电无机-有机杂化材料相比较,以本专利技术方法制备的杂化膜材料中无机硅氧化物成分和有机成分通过化学键相联,相容性更好;与美国专利US 5,371,154采用氯磺酸、磺酸等强酸性试剂制备的荷电杂化材料相比较,本专利技术方法采用的氧化步骤对聚硅氧烷结构的破坏较小;与《电化学学报》(ElectrochimicaActa,1998,43(10-11),1301-1306页)报道的采用紫外或热交联制备荷电杂化膜材料相比较,本专利技术在无机基体上涂层制得荷负电杂化膜,无需采用紫外或热交联步骤,简化了荷电膜的制备步骤。具体实施例方式以下通过实施例进一步详细说明本专利技术荷负电杂化膜的制备方法。实施例1取巯丙基三甲氧基硅烷,溶解于乙醇中,搅拌下加入去离子水和0.01mol/L盐酸,其摩尔比为硅烷∶乙醇∶水∶盐酸=1∶5∶3∶0.001;在25℃继续搅拌30分钟,将得到的溶胶倾倒入玻璃表面皿上,取一直径5cm,表面平均孔径为0.2μ的三氧化二铝片在该溶胶中浸10秒,翻转后,在室温、空气湿度为80%下放置一天,然后放入烘箱,常压下以10℃/h的速度升温至130℃,保持3小时,再自然降温到室温,得到表层为淡黄色的膜片。将该膜片在45℃,pH=4-7的3%过氧化氢水溶液中浸泡24小时,洗涤干燥,得到浸涂了一次的杂化膜。用常规的方法测定膜片阳离子交换容量,纯水通量和不同pH值环境下的流动电位,并根据纯水通量估算膜的平均孔径。将膜片清洗、干燥后,重复上述浸涂,干燥热处理和氧化的步骤,得到浸涂二次的杂化膜。该膜片性能测定后,按相同的步骤浸涂三次,四次,每次都进行性能的测定,并与0.2μ的三氧化二铝片的测定结果(涂膜次数记为0)比较。表1给出了杂化膜和0.2μ三氧化二铝支撑体的阳离子交换容量、通量及由通量估算的平均孔径 表2给出了杂化膜和0.2μ三氧化二铝支撑体的流动电位 从表1和表2可知,浸涂1-4次的膜都有一定的阳离子交换容量,并且在所考察的pH范围内,流动电位都是负值,不存在电荷转换点。说明制得的膜皆为荷负电膜。从浸涂四次的膜表面刮下少许粉末,干燥除水后进行热分析和红外测试。热分析表明粉末在氮气氛中,250℃开始失重,390℃失重达到最大值。红外光谱中1100cm-1附近有Si-O-Si的强特征峰,2910cm-1附近有亚甲基-CH吸收峰。这表明制备的膜含有烃基,同时无机Si-O-Si链大量存在,为无机-有机杂化物。综合上述分析结果,可知本实施例得到的膜片为荷负电的无机-有机杂化膜,且跟有机荷电膜相比(使用温度一般低于80℃),有较高的热稳定性。同时根据估算出的膜的平均孔径,本实施例得到的膜可以用于微滤和超滤领域。实施例2取巯丙基三甲氧基硅烷,溶解于乙醇中,搅拌下加入去离子水和0.01mol/L三氟乙酸,其摩尔比为硅烷∶乙醇∶水∶三氟乙酸=1∶7∶3∶0.001。按实施例1相同的步骤制备杂化膜,测定膜的阳离子交换容量,通量和流动电位,并根据通量估算膜平均孔径。表3给出了杂化膜阳离子交换容量、通量及由通量估算的平均孔径 表4为杂化膜流动电位 经上述分析可知,本实施例得到的膜片有一定的阳离子交换容量,在所考察的pH范围内,除个别本文档来自技高网
...

【技术保护点】
一种荷负电无机-有机杂化膜的制备方法,特征在于以分子链中含巯基的烷氧基硅烷或卤硅烷为原料,溶于溶剂中后,加入水和催化剂,在10-60℃搅拌反应,得到溶胶;上述各组份合适的摩尔比为硅烷∶溶剂∶水∶催化剂=1∶3-15∶3-10∶0.001-0.01;将所得的溶胶在无机基体上涂膜;膜片在室温、相对湿度为60-90%的环境下干燥至形成均匀稳定的凝胶层;再以5-20℃/小时的速度从室温升温到80-200℃,常压或减压条件下保温1-12小时;最后对生成物进行氧化反应,即:将生成物浸入pH=4-7的1-20%的氧化剂的水溶液中,在20-80℃保持12-50小时;所述分子链中含巯基的烷氧基硅烷或卤硅烷,其化学式可表达为[R↑[1](SH)R↑[2]]↓[p]SiX↓[4-p],式中R↑[1]和R↑[2]分别为含0-10,1-10个碳的烷基或芳基;X包括1-5个碳的烷氧基团和卤素,最常用的为Cl;P的值为1-3;所述催化剂包括盐酸、硫酸、三氯乙酸、氢氧化钠、氯化铵、氟化铵;所述无机基体包括Al↓[2]O↓[3]多孔陶瓷、Al↓[2]O↓[3]微滤或超滤膜、二氧化硅或二氧化钛;所述涂膜方法包括刮膜、喷洒、浸渍、流动、旋转涂覆;所述氧化剂包括过氧化氢、高锰酸钾、重铬酸钾、次氯酸。...

【技术特征摘要】

【专利技术属性】
技术研发人员:吴翠明徐铜文杨伟华
申请(专利权)人:中国科学技术大学
类型:发明
国别省市:34[中国|安徽]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1