天然物的分离方法及其分离装置制造方法及图纸

技术编号:708150 阅读:176 留言:0更新日期:2012-04-11 18:40
一种天然物的分离方法,其包括:    以极性溶剂萃取天然物,取其极性萃液;及    以超临界流体分馏方法对该极性萃液进行分馏;    其特征是:该超临界流体分馏,是以超临界二氧化碳界流体,在分馏管柱中,对该极性萃液进行分馏,并取具有相对较高浓度机能性成分的一或多个特定馏份。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术是有关一种天然物的分离方法及其分离装置,尤指一种利用超临界流体分馏中草药的分离方法及其分离装置。
技术介绍
天然物(尤其是中草药)的分离方法,通常采取萃取法或层析法。萃取法(含超临界流体萃取法)萃取效率很好,但分离效果不好,层析法分离效果不错,但产率不高。本专利技术首先使用萃取法配合超临界流体分馏,将萃取法所得的大量萃取物分馏,以取得所需的馏份。本专利技术方法具有萃取法和层析法的优点产能高和分离效果优越;但没有萃取法和层析法的缺点。
技术实现思路
本专利技术的目的之一在于提供一种天然物分离方法。本专利技术的另一目的在于提供一种中草药分离方法。本专利技术的再一目的在于提供一种利用萃取法配合超临界流体分馏分离中草药的方法。本专利技术的另一目的在于提供一种天然物分离装置。本专利技术的又一目的在于提供一种中草药分离装置。本专利技术的再一目的在于提供一种中草药超临界流体分馏分离装置。本专利技术的天然物分离方法,其包括以极性溶剂萃取天然物,取其极性萃液;及以超临界流体分馏方法对该极性萃液进行分馏;其特征是该超临界流体分馏,是以超临界二氧化碳流体,在分馏管柱中,对该极性萃液进行分馏,并取具有相对较高浓度机能性成分的一或多个特定馏份。上述方法尤其适用于中草药分离,但也适用于其它天然物分离,例如精油分离。上述第一步骤的极性萃取步骤,其可为任意已知的萃取方法或步骤,或其改良方法或步骤。其中所谓极性溶剂其可为任意已知的单一极性溶剂,或复数种极性溶剂知组合,但以低碳醇,水,或低碳醇和水的混合溶剂为较佳,以乙醇或乙醇和水的混合溶剂(例如酒精)为更佳。其中所谓低碳醇意指甲醇,乙醇,正丙醇,异丙醇,1-丁醇,2-丁醇,2-甲基丙-1-醇或2-甲基丙-2-醇。上述第二步骤的机能性成分,是指被萃取物中的有效成分。经由本专利技术方法,上述机能性成分通常可提升至1wt%以上,甚至10wt%以上,例如蜂胶中的类黄酮素。一般而言,上述机能性成分通常可提升至2wt%以上。上述第二步骤的超临界流体分馏分离,有别于传统超临界流体萃取。传统超临界流体萃取是单纯由萃取和收集两个步骤所构成,而本专利技术第二步骤的超临界流体分馏分离则含萃取,收集(或移除),多段分离和多段收集等步骤。其中多段分离和多段收集,是指将馏份多段分离和收集特定馏份两步骤重复多次,以二至六次为较佳,以三至四次为更佳,以三次为最佳。以三段式超临界流体分馏分离为例,其可再细分为萃取,收集(或移除),第一段分离,收集第一段分离馏份,第二段分离,收集第二段分离馏份,第三段分离,收集第三段分离馏份。至于收集及/或移除残留份,则为传统超临界流体萃取和本专利技术超临界流体分馏所共有,且方式类为同者。上述的超临界流体分馏以采用以三段式超临界流体分馏分离为例,其是采用一含超临界流体分馏槽,第一分离槽,第二分离槽和第三分离槽的分离装置进行分馏后的分离,其中取自第一步骤的极性萃取物和该超临界二氧化碳流体,是实质上由该萃取槽的两端逆向导入。以该极性萃取物实质上由该萃取槽顶部导入,而该超临界二氧化碳流体实质上由该萃取槽底部导入为较佳。上述该萃取槽的压力,以10至50Mpa为较佳,以15至40Mpa为更佳,以20至30MPa为最佳。上述该第一分离槽,第二分离槽和第三分离槽的压力,以实质上分别为15至20MPa,10至15MPa和5至10MPa为较佳。本专利技术的天然物分离装置,其包括一帮浦一高压帮浦一萃取槽,其含一气体导入部和一萃取物导入部,其中该气体导入部用以和该高压帮浦连接,而该萃取物导入部用以和该一帮浦连接;及n组超临界流体分馏收集组件,其中第一分离收集组件是和该分馏槽相连接,而各n组分馏收集组件,是依第1,2,…,n的顺序相连接,其中n为2或2以上的整数;其特征是该分馏槽的萃取物导入部,用以导入天然物进料,而该气体导入部用以导入二氧化碳,以进行超临界流体分馏,而后将该超临界流体分馏物依序导入第1至n个分离收集组件,用以分别在第1至n个分馏收集组件中取得第1至n个馏份。上述帮浦可采用一般帮浦或仪器(例如HPLC)用帮浦。上述高压帮浦可采用传统超临界流体萃取法所采用的高压帮浦。上述的萃取槽可为传统超临界流体萃取法所采用的超临界流体萃取槽,或类似装置。上述的分馏收集组件其可为已知的分馏收集组件,或类似装置,其含分馏管(fractionating column)和收集部件,其中该分馏管可为任意已知分馏管,例如罩泡式分馏管(bubble-cap fractionating column)或填充式分馏管,以后者为较佳。上述分离装置的其它信息,类同前述分离方法所述。此外,上述分离装置可再配置其它装置,例如配置温控装置,以控制系统部份或全部的温度。附图说明图1为本专利技术天然物分离装置一较佳具体实施例。L-进料储槽C-二氧化碳储槽F-超临界流体分馏槽S1,S2,S3-超临界流体第一,第二,第三分离槽V1,V2,V3,V4,V5,V6,V7-阀件 具体实施例方式实施例1-13分别取1000克高氏柴胡,于40℃下,以10升酒精萃取24小时,经滤纸过滤,得含机能性成份的萃取液。将上述萃取液导入萃取槽中,导入速率为0.1至1.0毫升/分钟(参见表2),而整个分榴系统则维持在30至80℃(参见表2)的恒温。以图1所示的超临界流体分馏装置,依表2所示条件(X1为压力,X2为温度,X3为进料流速)进行超临界流体分馏,其中超临界流体分馏流程如下(1)以高压帮浦(美国ISCO公司260D型),将超临界流体二氧化碳导入超临界流体分馏槽(图中代号F)底部,并控制超临界流体二氧化碳的压力及样品流速(参见表2),温度(参见表2)由热交换机(台湾HOTEC公司H-2410型)循环管路于萃取槽外维持(误差<1℃=,样品经由HPLC帮浦连续送至超临界流体分馏槽顶部,以进行分馏。(2)各超临界流体分离槽(图中代号分别为S1,S2,S3)实施条件如表1,由各超临界流体分离槽分别取得第一馏份(S1),第二馏份(S2),第三馏份(S3),而由分馏槽取得分馏残存份(R)。(3)将各馏份(S1,S2,S3)和萃取残存份(R),在40℃,真空度750mmHg条件下干燥至实质上为恒重。结果如表3,4所示。表3中分别列出实施例1-13中萃取残存份(R),第一馏份(S1),第二馏份(S2)和第三馏份(S3)的产率(%),其中所含的柴胡皂素A含量(mg/g),及由产率和柴胡皂素A含量计算出来的柴胡皂素A回收率(%)。表4中分别列出实施例1-13中,第一馏份(S1),第二馏份(S2)和第三馏份(S3)的产率(%),其中所含的柴胡皂素C含量(mg/g),及由产率和柴胡皂素A含量计算出来的柴胡皂素C回收率(%)。柴胡皂素A回收率和柴胡皂素C回收率计算方式,以实施例1第一馏份(S1)的柴胡皂素A为例说明如下回收率=W1/(W0+W1+W2+W3)其中W0=0.2(mg/g)*6.3%W1=38.9(mg/g)*7.6%W2=5.4(mg/g)*31.9% W3=0.2(mg/g)*54.3%实施例14-26分别取1000克加拿大进口的蜂胶,于40℃下,以4升酒精萃取24小时,经滤纸过滤,得含机能性成份的萃取液。其它流程类同实施例1-13所述。结果如表5,6所示。表5中分别列出实施例14-26中萃取残存份(R),本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:罗伟硕
申请(专利权)人:绿益康生物科技实业股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1