机器人辅助带锁髓内钉正骨手术医疗系统技术方案

技术编号:347946 阅读:280 留言:0更新日期:2012-04-11 18:40
机器人辅助带锁髓内钉正骨手术医疗系统,它涉及带锁髓内钉正骨手术由机器人辅助的医疗系统。本发明专利技术从手端(80)的医用牵引复位并联机器人1设置在多功能自动手术床(15)的端侧,正骨调整机构(2)设置在医用牵引复位并联机器人(1)上,正骨固定机构(3)设置在多功能自动手术床(15)上的一侧,高精度全自动C形臂X光机(4)设在多功能自动手术床(15)的边侧,导航机器人(5)设在多功能自动手术床(15)的另一边侧,机器人控制器(13″)的双向端口与主手控制站(17)的双向端口相连接,从手控制站(16)与主手控制站(17)之间通过网络(90)相连接。本发明专利技术具有通用性强,手术效果好,降低手术费用,减轻病人痛苦,减少医生的放射线损伤,实现正骨手术的模拟教学训练和远程治疗的优点。

【技术实现步骤摘要】

本专利技术涉及带锁髓内钉正骨手术由机器人辅助的医疗系统。
技术介绍
传统的带锁髓内钉正骨手术根据手术实施的位置不同分为股骨、胫骨等多种,手术难度也不尽相同。以股骨正骨手术为例,其基本过程为先要将病人的上身固定于手术床上,两个医生将病人骨折的股骨上下部分向外拉伸,称之为牵引。然后一个医生侧向固定病人的骨折处,使之保持一个固定的位置,称之为复位。牵引、复位完成后主治医生先在股骨一端的骨节末端打一个孔,以便植入一根长度与股骨长度相仿的髓内钉,然后在股骨远端和近端经皮穿孔(一般4个),以便用锁钉将髓内钉固定在骨骼上。在髓内钉锁定过程中目前临床上主要采用C臂机下徒手瞄准锁定、机械式远端锁定瞄准器、激光束引导、主动跟踪式计算机导航手术系统等。C臂机下徒手瞄准锁定不仅需要医生具有很高的操作技巧与丰富的临床经验,而且需要频繁地使用C臂机进行拍照,放射线损伤大,同时人为干扰因素多。手术时主治医生使用手电钻在股骨上打孔,由于股骨部分肌肉较多、外形复杂,主治医生不能用肉眼直接观测到手电钻钻入的位置,必须经常将手电钻退出来,使用X光机观察钻孔的情况,根据照相情况确定下次钻进的方向和深度。因此手术时间长、参与的医生较多,且医生会长时间受到X光的照射。另外由于麻药无法到达骨髓腔内部,手电钻多次进出骨髓腔,极大的增加了病人的痛苦。为减少放射线损伤,少用或不用C臂机,机械式远端锁定瞄准器得到了广泛的应用。但是机械式锁定瞄准器一般安装复杂,且容易发生形变,造成瞄准器与髓内钉位置关系发生变化,很难找准远端锁孔的位置,增加了操作的难度和额外损伤,有时甚至又重新回到C臂机下徒手瞄准锁定。而且不同厂家的瞄准器只能锁定自己厂家的髓内钉,不具备通用性。光学定位下的计算机导航系统需要大型的计算机图像处理硬件、软件和专用的手术器械,需要工程技术人员的指导,限制了医生的主观能动性,且价格昂贵,难以推广。
技术实现思路
本专利技术的目的是提供一种机器人辅助带锁髓内钉正骨手术医疗系统,它具有通用性强,手术效果好,降低手术费用,减轻病人痛苦,减少医生的放射线损伤,实现正骨手术的模拟教学训练和远程治疗的特点。本专利技术由从手端80和主手端70组成,从手端80由医用牵引复位并联机器人1、正骨调整机构2、正骨复位机构3、高精度全自动C形臂X光机4、导航机器人5、CCD摄像机6、高速图像采集卡7、图像处理单元8、机构控制单元9、位置传感器10、力传感器11、位置/力信号采集卡12、机器人控制器13、伺服、力控制单元14、多功能自动手术床15、从手控制站16、位置传感器10′、力传感器11′、位置/力信号采集卡12′、机器人控制器13′、伺服、力控制单元14′组成;主手端70由主手控制站17、虚拟手术仿真系统18、监视器19、遥操作并联主手20、力传感器11″、位置/力信号采集卡12″、机器人控制器13″、伺服、力控制单元14″、位置传感器10″、图像处理单元8′组成;从手端80的医用牵引复位并联机器人1设置在多功能自动手术床15的端侧,正骨调整机构2设置在医用牵引复位并联机器人1上,正骨固定机构3设置在多功能自动手术床15上的一侧,高精度全自动C形臂X光机4设在多功能自动手术床15的边侧,导航机器人5设在多功能自动手术床15的另一边侧,高精度全自动C形臂X光机4的输出端与高速图像采集卡7的输入端a相连接,CCD摄像机6的输出端与高速图像采集卡7的输入端b相连接,高速图像采集卡7的输出端与图像处理单元8的输入端相连接,图像处理单元8的输出端与从手控制站16的输入端z相连接,机构控制单元9的双向端口C与CCD摄像头6的双向端口相连接,机构控制单元9的双向端口d与高精度全自动C形臂X光机4的双向端口相连接,机构控制单元9的双向端口y与从手控制站16的双向端口k相连接,位置传感器10的输出端与位置/力信号采集卡12的输入端e相连接,位置传感器10的输出端f与导航机器人5的输入端相连接,导航机器人5的输出端与力传感器11的输入端相连接,力传感器11的输出端与位置/力信号采集卡12的输入端相连接,位置/力信号采集卡12的输出端与机器人控制器13的输入端h相连接,机器人控制器13的输出端与伺服、力控制单元14的输入端相连接,伺服、力控制单元14的输出端与导航机器人5的输入端g相连接,机器人控制器13的双向端口j与从手控制站16的双向端口m相连接,医用牵引复位并连机器人1上的输出端与位置传感器10′的输入端相连接,位置传感器10′的输出端与位置/力信号采集卡12′的输入端相连接,位置/力信号采集卡12′的输出端与机器人控制器13′的输入端相连接,机器人控制器13′的输出端与伺服、力控制单元14′的输入端相连接,伺服、力控制单元14′的输出端与医用牵引复位并联机器人1的输入端相连接,医用牵引复位并联机器人1的输出端o与力传感器11′的输入端相连接,力传感器11′的输出端与位置/力信号采集卡12′的输入端p相连接,机器人控制器13的双向端口q与从手控制站16的双向端口n相连接;主手端70的遥操作并联主手20的输出端与力传感器11″的输入端相连接,力传感器11″的输出端与位置/力信号采集卡12″的输入端S相连接,遥操作并联主手20的输出端r与位置传感器10″的输入端相连接,位置传感器10″的输出端与位置/力信号采集卡12″的输入端相连接,位置/力信号采集卡12″的输出端与机器人控制器13″的输入端相连接,机器人控制器13″的输出端与伺服、力控制单元14″的输入端相连接,伺服、力控制单元14″的输出端与遥操作并联主手20的输入端相连接,机器人控制器13″的双向端口与主手控制站17的双向端口相连接,主手控制站17的输出端w与虚拟手术仿真系统18的输入端相连接,主手控制站17的输出端t与图像处理单元8′的输入端相连接,图像处理单元8′的输出端与虚拟手术仿真系统18的输出端共同接入监视器19;从手控制站16与主手控制站17之间通过网络90相连接。本专利技术具有如下优点保护医护人员;医生不必在X光的照射下工作,减少了“受线”机会。具有通用性,适合任何厂家的髓内钉手术,手术效果好。由计算机专家系统根据图像信息确定的手术规划结果比人脑根据经验形成的手术规划效果好,并且机器人的定位和运动精度比人手要高几个数量级,手术精度高。降低手术费用病人术后康复周期短,并且异地的病人避免了往返路费,大大节省了费用。减轻病人痛苦手术创伤小,且一次整复就能满足要求,避免了二次手术给病人带来的痛苦。远程干预通过网络信息交互,即使是偏远地区的病人也能得到远程专家的诊断和治疗,当地医生也可以得到专家的指点。手术教学训练;80%的手术失误是人为因素引起的,所以手术训练极其重要。医生可在虚拟手术系统上观察专家手术过程,也可重复实习,使得手术培训的时间大为缩短,同时减少了对昂贵的实验对象的需求。附图说明图1是本专利技术的结构示意图,图2是医用牵引复位并联机器人1与高精度全自动C形臂X光机4及多功能自动手术床15和导航机器人5的工作位置示意图,图3是医用牵引复位并联机器人1的结构示意图,图4是高精度全自动C形臂X光机4的结构示意图,图5是多功能自动手术床15的结构示意图。具体实施例方式(参见图1、图2)本实施方式由从手端80和主手端70组成,本文档来自技高网
...

【技术保护点】
机器人辅助带锁髓内钉正骨手术医疗系统,它由从手端(80)和主手端(70)组成,从手端(80)由医用牵引复位并联机器人(1)、正骨调整机构(2)、正骨复位机构(3)、高精度全自动C形臂X光机(4)、导航机器人(5)、CCD摄像机(6)、高速图像采集卡(7)、图像处理单元(8)、机构控制单元(9)、位置传感器(10)、力传感器(11)、位置/力信号采集卡(12)、机器人控制器(13)、伺服、力控制单元(14)、多功能自动手术床(15)、从手控制站(16)、位置传感器(10′)、力传感器(11′)、位置/力信号采集卡(12′)、机器人控制器(13′)、伺服、力控制单元(14′)组成;其特征是主手端(70)由主手控制站(17)、虚拟手术仿真系统(18)、监视器(19)、遥操作并联主手(20)、力传感器(11″)、位置/力信号采集卡(12″)、机器人控制器(13″)、伺服、力控制单元(14″)、位置传感器(10″)、图像处理单元(8′)组成;从手端(80)的医用牵引复位并联机器人(1)设置在多功能自动手术床(15)的端侧,正骨调整机构(2)设置在医用牵引复位并联机器人(1)上,正骨固定机构(3)设置在多功能自动手术床(15)上的一侧,高精度全自动C形臂X光机(4)设在多功能自动手术床(15)的边侧,导航机器人(5)设在多功能自动手术床(15)的另一边侧,高精度全自动C形臂X光机(4)的输出端与高速图像采集卡(7)的输入端(a)相连接,CCD摄像机(6)的输出端与高速图像采集卡(7)的输入端(b)相连接,高速图像采集卡(7)的输出端与图像处理单元(8)的输入端相连接,图像处理单元(8)的输出端与从手控制站(16)的输入端(z)相连接,机构控制单元(9)的双向端口(C)与CCD摄像头(6)的双向端口相连接,机构控制单元(9)的双向端口(d)与高精度全自动C形臂X光机(4)的双向端口相连接,机构控制单元(9)的双向端口(y)与从手控制站(16)的双向端口(k)相连接,位置传感器(10)的输出端与位置/力信号采集卡(12)的输入端(e)相连接,位置传感器(10)的输出端(f)与导航机器人(5)的输入端相连接,导航机器人(5)的输出端与力传感器(11)的输入端相连接,力传感器(11)的输出端与位置/力信号采集卡(12)的输入端相连接,位置/力信号采集卡(12)的输出端与机器人控制器(13)的输入端(h)相连接,机器人控制器(13)...

【技术特征摘要】

【专利技术属性】
技术研发人员:富历新杜志江孙立宁
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:93[中国|哈尔滨]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1