差动式磁控形状记忆合金执行器制造技术

技术编号:3388576 阅读:304 留言:0更新日期:2012-04-11 18:40
差动式磁控形状记忆合金执行器,包括MSMA元件、永磁体、励磁线圈、铁心、隔磁板各两个,联接器和励磁电流控制器各一个。在电工钢片叠压而成的铁心上绕制励磁线圈,在两铁心之间预留的间隙内,联接器位于中心,沿间隙由联接器向两侧对称依次装入MSMA元件、隔磁板、永磁体,将两铁心通过压板和螺钉联接成一体,最后将励磁线圈联接到励磁电流控制器上。永磁体在两MSMA元件中产生大小相等方向相同的偏磁磁场,励磁线圈电流产生大小相等方向相反的控制磁场,两磁场叠加结果使两MSMA元件中的一个磁场增大而另一个磁场减小,两MSMA元件因变形量不同而使联接器位置移动,输出某方向的位移;通过改变通入励磁线圈电流的大小和方向可以控制执行器位移的大小和方向。

【技术实现步骤摘要】

本专利技术属于一种磁控执行机构,特别涉及一种采用差动方式控制的磁控形状记忆合金执行器。
技术介绍
新型功能材料中形状记忆合金的变形率较大,较适合于制造执行器。形状记忆合金有温控型和磁控型两种,前者是靠温度变化来控制材料的变形,后者是用改变磁场的大小来控制材料的变形。由于升温和降温皆需要一个过程,从而限制了温控型执行器的动态响应速度及应用范围。磁控形状记忆合金MSMA(Magnetically Controlled Shape Memory Alloy)是1993年才被发现的一种新型具有形状记忆功能的镍锰镓(NiMnGa)合金材料,不仅变形率大,而且易于控制,变形率与所施加的磁场强度有较好的线性关系;动态响应速度高,是温控型形状记忆合金频率响应的80倍,可以满足一般自动控制系统对执行器动态响应速度的要求;具有较高的能量转换效率和功率密度。磁控形状记忆合金是一种磁导率近于空气的非导磁材料,控制其变形需要较大的励磁功率;而且该种合金材料的磁控特性对温度比较敏感。图1为磁控形状记忆合金元件在施加控制磁场前(I)后(II)的形状对比。可以看出,在外磁场作用下MSMA元件沿磁场垂直方向明显伸长(L)。图2为产生直线位移的磁控形状记忆合金执行器基本结构示意图。用电磁铁产生控制MSMA元件变形的磁场B。磁场B去掉后利用恢复弹簧的压力f使MSMA元件恢复原形。该种结构的缺点一是产生MSMA足够大变形所需要的电磁铁S励磁功率较大;二是恢复弹簧的预压力不易准确调节而且具有机械惯性,从而影响了MSMA执行器的控制精度和降低了其动态响应速度;三是MSMA材料的磁控特性对温度比较敏感,环境温度变化影响执行器的工作稳定性。
技术实现思路
本专利技术的目的是提供一种可减小控制功率和能补偿温度影响的新型磁控形状记忆合金执行器。图3为本专利技术提出的差动式磁控形状记忆合金执行器的工作原理示意图。1′和2′为形状尺寸和磁控特性相同的两个MSMA元件,3′为用于输出位移的联接器,4′和5′为固定MSMA元件的支架。当对MSMA元件1′和2′分别施加如图3a所示相同的恒定偏磁磁场B0时,由于两元件所承受的磁场大小相同,因而产生的变形相同,故联接器位于中心位置而不会输出位移。当对MSMA元件1′和2′分别施加如图3b所示具有相同大小而方向相反的控制磁场Bc时,虽然对元件1′和元件2′施加的磁场方向不同,但皆垂直于元件的长轴方向。根据MSMA材料的特性,只要磁场垂直于元件的长轴方向,不管是90°还是270°,如果磁场大小相同,则元件所产生的变形相同,因而与图3a施加同方向的偏磁磁场情况相同,联接器仍位于中心位置而不会输出位移。图3c所示为将两个MSMA元件同时施加偏磁磁场B0和控制磁场Bc时的情况,由于两元件所施加的控制磁场方向相反,偏磁磁场与控制磁场相叠加后,在两元件中产生了不同的合成磁场,元件1′中两磁场相加,而元件2′中则两磁场相减。由于元件1′中磁场增强而元件2′中磁场减弱,故元件1′伸长产生压力使元件2′缩短,如图3c所示,此时联接器的位置下移,输出一个向下的位移。如果欲使联接器输出向上的位移,则可通过改变控制磁场的方向实现,如图3d所示。本专利技术的差动式磁控形状记忆合金执行器包括两个MSMA元件、两个永磁体、两个励磁线圈、两个铁心、两个隔磁板和一个联接器、一个磁场励磁电流控制器。其中两个MSMA元件的形状、尺寸和性能都相同,用以产生变形;两个形状、尺寸和材料特性完全相同的永磁体,用以产生恒定偏磁磁场,为了在两个MSMA元件中产生的磁场方向相同,两个永磁体的磁化方向必须相同;两个尺寸和匝数相同的励磁线圈用以产生控制磁场,两线圈可采用串联或并联接线方式,但必须产生相同方向的磁场,两种接线方式的励磁功率相同,只是串联方式与并联方式相比,励磁电压增大一倍而励磁电流减小一倍;两个形状对称的铁心,由导磁性能良好的电工钢片叠压而成,铁心各部分的尺寸经过磁场分析计算后确定,以使在永磁体产生的偏磁磁场和励磁线圈电流产生的控制磁场的共同作用下,铁心各部分的磁路不能饱和;两个由非导磁材料制造的隔磁板,用以限制永磁体产生的偏磁磁场的路径,使该磁场能均匀的穿过MSMA元件;用非导磁材料制造的联接器用以输出MSMA元件产生的位移;磁场励磁电流控制器用以控制通入两个励磁线圈电流的大小和方向。本专利技术的差动式磁控形状记忆合金执行器的连接关系为,在两铁心上分别绕制励磁线圈,在两铁心之间预留的间隙内,联接器位于中心,沿间隙由联接器向两侧对称依次装入MSMA元件、隔磁板、永磁体,然后将两铁心通过压板和螺钉联接成一体,最后将励磁线圈联接到励磁电流控制器上。本专利技术的优点是1.采用永磁体产生恒定偏磁磁场提高工作点,可控磁场的励磁控制仅需提供产生差动磁场部分的励磁功率,可用较小的励磁功率获得较大的MSMA变形,从而减小了MSMA执行器的体积和提高了控制效率。2.MSMA元件具有形状记忆功能,当去掉控制磁场后使MSMA恢复原形的方法一般是用沿MSMA元件长轴方向放置的弹簧压力来实现的。由于恢复弹簧的压力难以调整和控制,因而影响了MSMA执行器的控制精度。本专利技术不用弹簧而是采用同轴放置的两个MSMA元件互补工作方式,一个元件加磁场时另一个减磁场,加磁场的元件沿轴向伸长产生的压力用于减磁场元件恢复变形。MSMA的变形和恢复压力可通过施加两元件的磁场大小准确控制,因而提高了MSMA执行器的控制精度。3.MSMA元件的变形受温度影响较大,如何消除环境温度的影响对于MSMA执行器的控制精度具有重要意义。本专利技术采用了具有元件性能、电路参数和磁路结构对称的差动控制方式,可消除环境温度和控制电源波动等因素的影响,提高了MSMA执行器的稳定性。附图说明图1为磁控形状记忆合金元件在施加控制磁场前后的形状对比图;图2为产生直线位移的磁控形状记忆合金执行器基本结构示意图;图3为本专利技术提出的差动式磁控形状记忆合金执行器的工作原理示意图,其中a)偏磁磁场,b)可控磁场,c)合成磁场产生向下位移,d)合成磁场产生向上位移;图4为本专利技术差动式磁控形状记忆合金执行器磁路结构图;图5为差动式磁控形状记忆合金执行器控制电路串联方式接线图。具体实施例方式如图4、图5所示,本专利技术差动式磁控形状记忆合金执行器包括MSMA元件1和2、用以产生偏磁磁场的永磁体3和4、用以产生控制磁场的励磁线圈8和9、铁心6和7、位移输出联接器5、隔磁板10和11,以及用以控制励磁线圈电流的磁场励磁电流控制器12。其连接关系为在电工钢片叠压而成的两铁心6和7上分别绕制励磁线圈8和9,在两铁心之间预留的间隙内,联接器5位于中心,沿间隙由联接器5向两侧对称依次装入MSMA元件1和2、隔磁板10和11、永磁体3和4,然后将两铁心通过压板和螺钉联接成一体,最后将励磁线圈8和9联接到励磁电流控制器12上。当励磁线圈8和9中未通入电流时,MSMA元件1和2中仅有永磁体3和4产生的恒定偏磁磁场。由于永磁体和磁路的对称结构,MSMA元件1和2中的磁场大小相同故变形量相同,联接器位于中心位置而不输出位移,如图3a所示。当励磁线圈中通入一个方向的电流时,所产生的控制磁场在MSMA元件1和2中的磁场方向相反。控制磁场与永磁体产生的偏磁磁场相叠加,在两MSMA元件中一个磁本文档来自技高网
...

【技术保护点】
一种差动式磁控形状记忆合金执行器,其特征在于该执行器包括两个MSMA元件、两个永磁体、两个励磁线圈、两个铁心、两个隔磁板和一个联接器、一个磁场励磁电流控制器,其连接关系为:两铁心上分别绕制励磁线圈,在两铁心之间预留的间隙内,联接器位于中心,沿间隙由联接器向两侧对称依次装入MSMA元件、隔磁板、永磁体,然后将两铁心通过压板和螺钉联接成一体,最后将励磁线圈联接到励磁电流控制器上。

【技术特征摘要】

【专利技术属性】
技术研发人员:王凤翔李文君张庆新吴新杰张凤阁李晨曦
申请(专利权)人:沈阳工业大学
类型:发明
国别省市:89[中国|沈阳]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1