网络攻击下基于混合触发机制的多智能体系统一致性的控制方法技术方案

技术编号:22237437 阅读:30 留言:0更新日期:2019-10-09 17:24
本发明专利技术针对网络攻击下基于混合触发机制的多智能体系统一致性问题,属于多智能体协同一致控制技术领域,研究了网络攻击下基于混合触发机制的多智能体系统的一致性控制问题,采用伯努利变量描述混合触发机制,以减轻网络传输的负担,建立了闭环多智能体系统的数学模型,基于李雅普诺夫稳定性理论和线性矩阵不等式理论,给出使控制系统一致的充分条件,即定理1。利用具有不确定转移率的马尔可夫跳变来描述系统中拓扑的切换,本发明专利技术通过分析时变延时、切换拓扑、随机网络攻击等因素对系统的影响,可以实现多智能体系统一致性,且计算简单有效。

Unified Consistency Control Method of Multi-Agent System Based on Hybrid Trigger Mechanism under Network Attacks

【技术实现步骤摘要】
网络攻击下基于混合触发机制的多智能体系统一致性的控制方法
本专利技术属于多智能体协同一致控制
,具体说的是网络攻击下基于混合触发机制的多智能体系统一致性的控制方法。
技术介绍
近十几年来,由于多智能体系统在无人机协同控制、编队控制等多方面的广泛应用而得到了广泛的研究。一致性问题是多智能体系统中的一个关键问题,一致性问题意味着多智能体系统中所有智能体的某些变量最终都必须收敛到同一状态。研究者对于一致性理论的各个方面进行了研究,包括有向/无向通信网络的多智能体一致性理论、固定/动态拓扑情况下的多智能体一致性理论、时滞系统的一致性理论、信息不确定以及异步通信情况下的多智能体一致性理论等问题,同时也在一阶、二阶和高阶一致性理论方面取得了一定的成果。为了实现一致性,通常设计一个控制器,根据本地交换的信息,控制器可以产生分布式控制动作,以保证所有智能体在某些物理量(例如位置或速度)上达成一致。值得注意的是,智能体之间的信息交换受时间延时的影响。网络通信信道有限,智能体不能对状态进行即时采样,智能体需要花费时间进行相关计算,这都会导致时延,因此所设计的控制器必须具有鲁棒性。此外,通信拓扑随时间变化的情况也经常发生,即由于临时通信丢失或智能体布局的改变而导致拓扑发生变化,即切换拓扑,从而导致协商一致协议的行为发生变化。由于事件触发机制能够大大减少智能体之间的信息传输和智能体控制器调整的次数,因此其应用越来越广泛。然而,大多数事件触发机制总是以牺牲系统性能为代价,并且通常需要在通信数量和系统性能之间取得平衡。在多智能体系统中,优化数据传输方法仍然是一个挑战。在实际的控制系统中,通信带宽的利用率很低,在一定的时间内信息的传输量很少。针对这种系统,无论是事件触发机制还是时间触发机制都不能保证系统的最佳性能。如何解决这个问题,仍然是一个挑战。因此,本文提出了一种包括时间触发机制与事件触发机制的混合触发机制,目的就是缩短这一差距。各国许多专家学者对多智能体的协同一致性控制进行了大量的研究,并且取得了丰硕的成果,但仍有不少影响控制系统的因素尚未考虑,主要表现在,近年来,网络的飞速发展使得控制领域网络与网络的连接更加紧密,虽然网络的引入增加了控制系统许多方面的工作效率,然而也带来了巨大的挑战,如数据包丢失、随机网络攻击、网络延时等,其中随机网络攻击是影响控制系统的一个最重要的因素。在实际的控制系统中,智能体之间的信息交互都是通过网络来实现的,因此就必须需要考虑网络安全问题,随机的网络攻击可以用非线性函数来表示。迄今为止,网络攻击下基于混合触发机制的多智能体系统一致性问题还没有文献报道。针对网络攻击下基于混合触发机制的多智能体系统一致性问题,提出了网络攻击下多智能体系统实现一致性的控制方法。本文提出一种新的控制方法来研究网络攻击下基于混合触发机制的多智能体系统的一致性控制问题。采用随机伯努利变量描述混合触发机制以减轻网络负担。在混合触发机制下,考虑了时变延时、切换拓扑、随机网络攻击等因素的影响,建立了闭环控制系统的数学模型。基于Lyapunov稳定性理论和LMI理论,给出了系统一致的主要结果定理。利用具有不确定转移率的马尔可夫跳变来描述拓扑的切换,三种拓扑之间切换的概率是不确定的。结果表明该方法具有很好的可靠性和鲁棒性。
技术实现思路
本专利技术为了解决网络攻击下多智能体系统的一致性问题,提供了一种基于混合触发机制的多智能体系统一致性控制方法。该方法能够通过对系统中每个智能体的控制实现系统的一致性控制,还考虑了时变延时、切换拓扑、随机网络攻击等因素的影响,分析了系统在不确定因素下的一致性,因此该方法具有很好的通用性,灵活性、鲁棒性与可伸缩性。首先,为了减轻网络负担,引入了混合触发机制,为了更接近实际情况,还考虑了时变延迟、切换拓扑和随机网络攻击,其中随机网络攻击用伯努利变量来描述。其次,在通信拓扑中不存在生成树的情况下,定理1给出了系统一致的充分条件。结果表明该方法具有很好的可靠性和鲁棒性。拉普拉斯矩阵L=[lij]为:L=D-A(1)其中其中D为度矩阵,A为邻接矩阵,网络攻击下基于混合触发机制的多智能体系统的一致性控制,具体包括如下步骤:步骤一:多智能体系统的运动模型建立将多智能体系统中每个智能体看作为二维平面内运动的质点,其简化运动模型为:其中xi∈Rn表示第i个智能体的状态变量,智能体动态的阶数由n决定,ui∈Rn是第i个智能体的控制输入。θt随时间的变化而变化,它表示多智能体系统在时间t的每个时刻所连接的智能体,τi(t)是影响第i个智能体的控制输入的时变延时。设τi(t)=τ+λi(t),其中τ是常数,λi(t)是随时间变化的扰动,满足因此在多智能体系统中对所有的智能体有成立。步骤二:一致性控制器设计以及系统闭环方程建立考虑如下一致性控制器:其中K∈Rn×n是常数矩阵增益,aij(θt)决定当前的拓扑状态,例如,如果节点i和j之间没有通信,则aij(θt)=0,ui(θt,t)表示智能体i的基于当前拓扑结构的控制输入。智能体状态的初始条件为:在区间内,函数μi是任意的,对应于初始条件的集合。连续时间马尔可夫链决定参数θt的动态特性,其中马尔可夫链具有由集合s给出的离散状态,其中s是多智能体系统中不同拓扑的数量。概率转换矩阵Ψ=[ψpq]的表达式如下:在此式中,ψpq表示在t时刻在区间Δ>0内从拓扑p切换到拓扑q的概率,对所有的都有成立,(πpq+εpq)是不确定转移矩阵Π的元素。在式(7)中,πpq表示从状态p切换到状态q的概率的估计值,εpq表示估计值的误差,εpq未知,且有εpq∈[-δpq,δpq],其中0<δpq<πpq。很明显πpq和δpq均是正的,并且因此最后,将马尔可夫链的初始分布设为υ=(υ1,υ2,K,υs)。将(3)和(4)写成紧凑形式如下:当混合触发机制中使用时间触发时,数据采样将按以下方式传输:其中tr是正整数,它满足是由网络引起的相应的网络延时,h是采样周期。令τ(t)=t-trh,因此式(10)可以重写为如下形式:x1(t)=x(t-τ(t))(11)式中,τ(t)∈[0,τM],τM,是延迟τ(t),的最大值。当混合触发机制中选择事件触发机制时,给出如下事件触发条件:其中Ω>0,0≤σ<1,阈值误差er(t)的表达式为为了便于分析,我们把区间分成几个子区间,假设存在一个常数满足其中并且定义且有不等式成立。经过事件触发机制的采样信号表达式如下:x2(t)=x(t-d(t))+er(t)(13)时间触发机制与事件触发机制之间切换的概率由随机伯努利变量α(t)来描述,则图1中的的表达式如下:其中0≤α(t)≤1,并且α(t)具有如下性质:是α(t)的期望,是α(t)的方差。网络攻击由一个非线性函数f(x(t))来表示,则图1中的表达式如下:在式(16)中,f(x(t-η(t)))表示网络攻击,其中η(t)∈[0,ηM]表示网络攻击的时间延时。0≤β(t)≤1也服从伯努利分布,它表示网络攻击发生的可能性。且有:因此一致性控制器(4)可以写成如下形式:因此可以得到混合触发闭环多智能体系统,即在式(19)中,因此,一下给出一致性的定义:定义1:当使用协商一致控制器(4)并引入混合触发机制,在随机网本文档来自技高网
...

【技术保护点】
1.网络攻击下基于混合触发机制的多智能体系统一致性的控制方法,其特征在于:具体包括如下步骤:步骤一:多智能体系统的运动模型建立;步骤二:一致性控制器设计以及系统闭环方程建立;步骤三:转换多智能体系统建立;步骤四:闭环多智能体系统的一致性实现。

【技术特征摘要】
1.网络攻击下基于混合触发机制的多智能体系统一致性的控制方法,其特征在于:具体包括如下步骤:步骤一:多智能体系统的运动模型建立;步骤二:一致性控制器设计以及系统闭环方程建立;步骤三:转换多智能体系统建立;步骤四:闭环多智能体系统的一致性实现。2.根据权利要求1所述的网络攻击下基于混合触发机制的多智能体系统一致性的控制方法,其特征在于:多智能体系统为用线性系统或能够线性化的系统或时不变系统来描述,提出了包括时间触发机制和事件触发机制的混合触发机制,时间触发机制...

【专利技术属性】
技术研发人员:陈侠尹立远
申请(专利权)人:沈阳航空航天大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1