一种一维纳米材料界面结合能的测量方法技术

技术编号:21058049 阅读:17 留言:0更新日期:2019-05-08 05:47
一种一维纳米材料界面结合能的测量方法,先制作周期的沟槽微结构,使用匀胶机将一维管状纳米材料分散液均匀地旋涂在沟槽微结构上,在扫描电子显微镜下寻找第一、第二测试样品,第一测试样品是单根一维纳米材料垂直横跨沟槽微结构的沟槽两端,第二测试样品是结构完整的单根一维纳米材料;将第一测试样品两端通过电子束沉积铂原子或碳原子固定在沟槽微结构上;移动原子力显微镜探针和第二测试样品的一端固定;移动原子力显微镜探针,使第二、第一测试样品贴合;驱动原子力显微镜探针带动第二测试样品从两个测试样品的界面结合处剥离,实时记录原子力显微镜力传感器数据,求解纳米材料界面结合能,本发明专利技术获得的数据真实可靠。

【技术实现步骤摘要】
一种一维纳米材料界面结合能的测量方法
本专利技术涉及纳米材料界面结合能测量
,具体涉及一种一维纳米材料界面结合能的测量方法。
技术介绍
纳米材料由于其独特的力学、热学和光学性质,在各个领域都得到了广泛的应用。纳米材料间形成的界面对整体材料功能的实现和性能的发挥起着重要作用,深入理解材料的界面情况对于设计和制造纳米复合材料具有关键性的指导意义,因此对于纳米材料界面结合能的测量显得尤为重要。现有测量一维纳米材料间结合能的方法为拉出法,该方法难以精确测量一维纳米材料间的界面结合能。同时,当对测量界面结合能的测量延伸到纳米尺度时,该测量方法的测量精度也远远无法满足实际需要,存在精度低的缺点。
技术实现思路
为了克服上述现有技术的缺点,本专利技术的目的在于提供了一种一维纳米材料界面结合能的测量方法,能原位测量纳米材料表面各局部的界面结合能,获得的数据真实可靠。为了达到上述目的,本专利技术采取的技术方案为:一种一维纳米材料界面结合能的测量方法,包括以下步骤:第一步,制作并选择测试样品:制作周期的沟槽微结构3,使用匀胶机将一维管状纳米材料分散液均匀地旋涂在沟槽微结构3上,通过电泳的方法,使得一维管状纳米材料沿电场方向定向排列,电场方向应垂直于沟槽微结构3;在扫描电子显微镜下寻找第一测试样品4和第二测试样品2,第一测试样品4是单根一维纳米材料垂直横跨沟槽微结构3的沟槽两端,第二测试样品2是结构完整的单根一维纳米材料;第二步:运用纳米操作技术和纳米焊接技术,将第一测试样品4两端通过电子束沉积铂原子或碳原子5固定在沟槽微结构3上;第三步:通过控制纳米压电操作台带动原子力显微镜探针1向第二测试样品2的一端靠近,并通过纳米焊接技术使原子力显微镜探针1和第二测试样品2的该端固定;第四步:通过移动原子力显微镜探针1,使第二测试样品2和第一测试样品4贴合;第五步:控制纳米压电操作台,通过驱动原子力显微镜探针1带动第二测试样品2从第一测试样品4和第二测试样品2的界面结合处剥离,并实时记录原子力显微镜力传感器数据;第六步:将原子力显微镜力传感器数据带入公式(1)中,得到纳米材料界面结合能G:式(1)中,Fy为剥离力的竖直分量,α为剥离角度,Fy由原子力显微镜力传感器直接读取,α由一维纳米材料在剥离实验过程中的变形曲线求得。所述的第一步中沟槽微结构3是通过干法刻蚀技术在硅片上制作出宽为20μm,深度10μm,周期为40μm的周期性结构。所述的第五步中控制纳米压电控制台带动第二测试样品2移动的位移不同,来保证测量不同剥离点的材料结合能的信息。所述的第六步得到的纳米材料界面结合能G和与其对应的分离点位置绘制成结合能-位置曲线,来表示材料不同位置处的结合能大小信息,作图软件采用Origin9.0数据处理软件绘制。所述的纳米材料界面结合能的测量方法在超净间完成,温度为20-25℃,湿度为40-60%。所述的纳米材料界面结合能的测量方法在扫描电子显微镜(SEM)的监测下完成的。本专利技术的有益效果为:(a)本专利技术方法能定量测量一维纳米材料界面结合能;(b)本专利技术方法可以测量多种一维纳米材料的界面结合能,操作简单,能广泛应用于微/纳机电系统的机械性能设计;(c)本专利技术方法可以原位测量一维纳米材料不同位置处的界面结合能,所取得的直接测量结果真实有效,理论误差大大减小;(d)本专利技术方法借助了现代化微/纳结构领域先进的测试设备,其测试精度可以得到很好的保证,进一步保证最终测试结果的有效性。附图说明图1是本专利技术方法的流程图。图2是本专利技术第二测试样品2向第一测试样品4缓慢靠近的示意图。图3是本专利技术第二测试样品2和第一测试样品4部分贴合的示意图。图4是本专利技术第二测试样品2从第一测试样品4和第二测试样品2的界面处剥离的示意图。图5是纳米材料界面结合能G中参数的示意图。具体实施方式下面结合附图和实施例对本专利技术做详细描述。参照图1,一种一维纳米材料界面结合能的测量方法,在超净间完成,温度为20-25℃,湿度为40-60%,并在扫描电子显微镜(SEM)的监测下完成,包括以下步骤:第一步,制作并选择测试样品:在硅片上通过干法刻蚀的方法制作宽为20μm,深度10μm,周期为40μm的周期性结构沟槽微结构3,将一维管状纳米材料分散液使用匀胶机均匀地旋涂在沟槽微结构3上,通过电泳的方法,使得一维管状纳米材料沿电场方向定向排列,电场方向应垂直于沟槽微结构3;在扫描电子显微镜下寻找第一测试样品4和第二测试样品2,第一测试样品4是单根一维纳米材料垂直横跨沟槽微结构3的沟槽两端,第二测试样品2是结构完整的单根一维纳米材料;第二步:运用纳米操作技术和纳米焊接技术,将第一测试样品4两端通过电子束沉积铂原子或碳原子5固定在沟槽微结构3上;第三步:通过控制纳米压电操作台带动原子力显微镜探针1向第二测试样品2的一端靠近,并通过纳米焊接技术使原子力显微镜探针1和第二测试样品2的该端固定,如图2所示;第四步:通过移动原子力显微镜探针1,使第二测试样品2和第一测试样品4缓慢贴合,如图3所示;第五步:控制纳米压电操作台,通过驱动原子力显微镜探针1带动第二测试样品2缓慢地从第一测试样品4和第二测试样品2的界面结合处剥离,如图4所示,并实时记录原子力显微镜力传感器数据;控制纳米压电控制台带动第二测试样品2移动的位移不同,来保证测量不同分离点的材料结合能的信息;第六步:将原子力显微镜力传感器数据带入公式(1)中,得到纳米材料界面结合能G:式(1)中,Fy为剥离力的竖直分量,α为剥离角度,Fy由原子力显微镜力传感器直接读取,α由一维纳米材料在拉拔实验过程中的变形曲线求得,如图5所示,图中,Fx为剥离力的水平分量,O为坐标原点,A为剥离位置,B为原子力显微镜探针1和第二测试样品2的结合点。将纳米材料界面结合能G和与其对应的分离点位置绘制成结合能-位置曲线,来表示材料不同位置处的结合能大小信息,作图软件采用Origin9.0数据处理软件绘制。本文档来自技高网...

【技术保护点】
1.一种一维纳米材料界面结合能的测量方法,其特征在于,包括以下步骤:第一步,制作并选择测试样品:制作周期的沟槽微结构(3),将一维管状纳米材料分散液使用匀胶机均匀地旋涂在沟槽微结构(3)上,通过电泳的方法,使得一维管状纳米材料沿电场方向定向排列,电场方向应垂直于沟槽微结构(3);在扫描电子显微镜下寻找第一测试样品(4)和第二测试样品(2),第一测试样品(4)是单根一维纳米材料垂直横跨沟槽微结构(3)的沟槽两端,第二测试样品(2)是结构完整的单根一维纳米材料;第二步:运用纳米操作技术和纳米焊接技术,将第一测试样品(4)两端通过电子束沉积铂原子或碳原子(5)固定在沟槽微结构(3)上;第三步:通过控制纳米压电操作台带动原子力显微镜探针(1)向第二测试样品(2)的一端靠近,并通过纳米焊接技术使原子力显微镜探针(1)和第二测试样品(2)的该端固定;第四步:通过移动原子力显微镜探针(1),使第二测试样品(2)和第一测试样品(4)贴合;第五步:控制纳米压电操作台,通过驱动原子力显微镜探针(1)带动第二测试样品(2)从第一测试样品(1)和第二测试样品(2)的界面结合处剥离,并实时记录原子力显微镜力传感器数据;第六步:将原子力显微镜力传感器数据带入公式(1)中,得到纳米材料界面结合能G:...

【技术特征摘要】
1.一种一维纳米材料界面结合能的测量方法,其特征在于,包括以下步骤:第一步,制作并选择测试样品:制作周期的沟槽微结构(3),将一维管状纳米材料分散液使用匀胶机均匀地旋涂在沟槽微结构(3)上,通过电泳的方法,使得一维管状纳米材料沿电场方向定向排列,电场方向应垂直于沟槽微结构(3);在扫描电子显微镜下寻找第一测试样品(4)和第二测试样品(2),第一测试样品(4)是单根一维纳米材料垂直横跨沟槽微结构(3)的沟槽两端,第二测试样品(2)是结构完整的单根一维纳米材料;第二步:运用纳米操作技术和纳米焊接技术,将第一测试样品(4)两端通过电子束沉积铂原子或碳原子(5)固定在沟槽微结构(3)上;第三步:通过控制纳米压电操作台带动原子力显微镜探针(1)向第二测试样品(2)的一端靠近,并通过纳米焊接技术使原子力显微镜探针(1)和第二测试样品(2)的该端固定;第四步:通过移动原子力显微镜探针(1),使第二测试样品(2)和第一测试样品(4)贴合;第五步:控制纳米压电操作台,通过驱动原子力显微镜探针(1)带动第二测试样品(2)从第一测试样品(1)和第二测试样品(2)的界面结合处剥离,并实时记录原子力显微镜力传感器数据;第六步:将原子力显微镜力传感器数据带入公式(1)中,得到纳米材料界面...

【专利技术属性】
技术研发人员:陈小明李浩邵金友丁鹏叶世博田洪淼
申请(专利权)人:西安交通大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1