一种用于加氢保护剂的载体、催化剂及其制备方法技术

技术编号:21045600 阅读:137 留言:0更新日期:2019-05-07 23:07
本发明专利技术公开了一种用于加氢保护剂的载体、催化剂及其制备方法。所述载体为氧化铝载体,包括主体氧化铝和棒状氧化铝,所述的主体氧化铝为具有微米级孔道的氧化铝,其中至少部分棒状氧化铝分布在主体氧化铝的外表面和微米级孔道中。该载体的制备方法是首先制备载体中间体,然后将载体中间体浸入碳酸氢铵溶液中,然后密封热处理,热处理后物料经干燥、焙烧,制得载体。该载体作为渣油加氢保护催化剂,具有大分子扩散性能好、容杂质能力强、脱金属活性高等特性,特别适用于渣油加氢处理工艺中。

A carrier, catalyst and its preparation method for hydrogenation protectant

The invention discloses a carrier, a catalyst for hydrogenation protectant and a preparation method thereof. The carrier is alumina carrier, including main alumina and rod alumina. The main alumina is alumina with micron-scale channels, in which at least part of rod alumina is distributed on the outer surface and micron-scale channels of the main alumina. The preparation method of the carrier is to prepare the carrier intermediate first, then immerse the carrier intermediate in ammonium bicarbonate solution, and then seal the heat treatment. After heat treatment, the material is dried and roasted to prepare the carrier. As a protective catalyst for residue hydrotreating, the carrier has the characteristics of good macromolecule diffusion, strong impurity tolerance and high demetallization activity, and is especially suitable for residue hydrotreating process.

【技术实现步骤摘要】
一种用于加氢保护剂的载体、催化剂及其制备方法
本专利技术涉及一种氧化铝载体、催化剂及其制备方法,具体地涉及一种用于渣油加氢保护剂的载体、催化剂及其制备方法。
技术介绍
目前,加氢处理仍然是生产优质、环境友好石油产品的最重要手段。加氢处理技术的核心是催化剂,对于石油的重组分(例如VGO,尤其是渣油)加氢处理来说,催化剂的孔径和孔容的大小将直接影响催化剂活性的发挥。渣油加氢保护催化剂的主要功能是脱除渣油中的铁、钙、镍和钒等物质。现有渣油加氢保护催化剂所使用的载体材料一般为大孔氧化铝及其改性产品。大孔氧化铝常用的制备方法有:物理造孔法和高温焙烧法等。US4448896、US4102822等用炭黑、淀粉等物理扩孔剂与活性氧化铝或氧化铝的前驱物混捏来扩大氧化铝载体的孔径,物理扩孔剂的用量为氧化铝10wt%以上,上述方法是在氧化铝前驱物中加入物理扩孔剂,而且扩孔剂的用量大,造成氧化铝的孔分布弥散,大孔部分不能形成连续贯穿孔道,孔道为墨水瓶型,孔口较小,并且强度较差。CN102861617A公开了一种双重孔结构氧化铝载体的制备方法。该方法包括称取一定量的拟薄水铝石干胶粉,与适量胶溶剂、助挤剂混合均匀,然后向上述物料中加入适量碳酸氢铵水溶液,将所得物料混捏成可塑体,挤条成型,成型物料放置于密封容器内经水热处理后焙烧制得氧化铝载体。该技术制备的氧化铝载体虽然具有双重孔分布,但1000nm以上的孔含量较低,不利于渣油中铁、钙、镍、钒等物质的沉淀和脱除。CN1120971A公开了一种双峰孔结构氧化铝载体的制备方法。该方法将两种或两种以上不同原料路线方法制备的拟薄水铝石干胶法均匀混合,然后进行胶溶、成型、干燥和焙烧处理而制得,所得氧化铝的比表面积为100-200m2/g,孔容为0.7-1.6mL/g,双峰孔分别集中在3.5-35nm和100nm以上区域,其中100nm以上的孔所占的孔容为总孔容的10%-56%。但孔直径为1000nm以上的孔含量较低,不利于渣油中铁、钙、镍和钒等物质的沉淀和脱除。
技术实现思路
为克服现有技术中的不足之处,本专利技术提供了一种加氢保护催化剂载体、加氢保护催化剂及其制备方法。采用本专利技术载体制备的加氢保护催化剂具有大分子扩散性能好、容杂质能力强、脱金属活性高等特性,特别适用于渣油加氢处理工艺中。本专利技术的加氢保护催化剂载体,所述载体为氧化铝载体,包括主体氧化铝和棒状氧化铝,所述的主体氧化铝为具有微米级孔道的氧化铝,其中至少部分棒状氧化铝分布在主体氧化铝的外表面和孔直径D为5-10μm的微米级孔道中,棒状氧化铝长度为1-12μm,直径为100-300nm;所述载体的孔分布如下:孔直径为10nm以下的孔所占的孔容为总孔容的10%以下,孔直径为15-35nm的孔所占的孔容为总孔容的30%-50%,孔直径为100-800nm的孔所占的孔容为总孔容的30%-45%,孔直径大于1000nm的孔所占的孔容为总孔容的10%-26%,优选为10%-24%。本专利技术中涉及的微米级孔道是指孔直径D为5-10μm的微米级孔道本专利技术载体中,棒状氧化铝基本分布于主体氧化铝的外表面和微米级孔道中。分布于主体氧化铝的外表面和微米级孔道中的棒状氧化铝占所有棒状氧化铝总重量的95%以上,优选为97%以上。本专利技术载体中,微米级孔道内棒状氧化铝的长度以0.3D-0.9D(即为微米级孔道直径的0.3-0.9倍)为主,即微孔内的棒状氧化铝以重量计约85%以上的长度为0.3D-0.9D;外表面棒状氧化铝的长度以3-8μm为主,即外表面上的棒状氧化铝以重量计约85%以上的长度为3-8μm。其中,在主体氧化铝的微米级孔道中,棒状氧化铝以无序相互交错的状态分布。其中,至少部分棒状氧化铝的至少一端附着在主体的微米级孔道壁上,优选至少部分棒状氧化铝的至少一端结合在微米级孔道壁上,与主体氧化铝形成一体。进一步优选,微米级孔道中的棒状氧化铝的至少一端结合在微米级孔道壁上,与主体氧化铝形成一体。其中,在主体氧化铝的外表面上,棒状氧化铝以无序相互交错的状态分布。其中,至少部分棒状氧化铝的一端附着在主体氧化铝的外表面上,优选至少部分棒状氧化铝的一端结合在主体氧化铝的外表面上,另一端向外伸出,与主体氧化铝形成一体。进一步优选,主体氧化铝的外表面上的棒状氧化铝的一端结合在主体氧化铝的外表面上,另一端向外伸出,与主体形成一体。本专利技术载体中,主体氧化铝的微米级孔道中棒状氧化铝的覆盖率占70%-95%,其中所述覆盖率是指主体氧化铝的微米级孔道的内表面因棒状氧化铝而被占去的表面占主体微米级孔道内表面的百分数。主体氧化铝的外表面上棒状氧化铝的覆盖率占70%-95%,其中所述覆盖率是指主体氧化铝的外表面上因棒状氧化铝而被占去的表面占主体氧化铝的外表面的百分数。本专利技术载体,其性质如下:比表面积为140-290m2/g,孔容0.6-1.5mL/g,压碎强度为9-18N/mm。本专利技术载体中,由棒状氧化铝以无序相互交错形成的孔集中在100-800nm之间。本专利技术第二方面提供了一种加氢保护催化剂载体的制备方法,包括:(1)制备载体中间体;(2)将载体中间体浸入碳酸氢铵溶液中,然后密封热处理,热处理后物料经干燥、焙烧,制得载体。本专利技术载体的制备方法中,步骤(1)所述载体中间体的性质如下:比表面积为120-280m2/g,孔容为0.7-1.4mL/g,孔分布如下:孔直径为15-35nm的孔所占的孔容为总孔容的25%-45%,孔直径为100-800nm的孔所占的孔容为总孔容的15%-45%,孔直径为5µm以上的孔(优选孔直径为5-10µm的孔)所占的孔容为总孔容10%-20%。本专利技术载体的制备方法中,步骤(1)所述载体中间体可以采用常规方法制备,比如物理扩孔剂法,具体过程如下:将拟薄水铝石与物理扩孔剂混捏成型,成型物经干燥、焙烧,得到载体中间体。所述的物理扩孔剂可以为活性炭、木屑、聚乙烯醇中的一种或几种,所加物理扩孔剂的粒径根据氧化铝载体中间体的微米级孔道进行选择,其中所述物理扩孔剂的粒径优选约为5-10µm,物理扩孔剂加入量为氧化铝载体中间体重量的21wt%-35wt%。所述的混捏成型可以采用本领域常规方法进行,成型过程中,可以根据需要加入常规的成型助剂,比如胶溶剂、助挤剂等中的一种或多种。所述的胶溶剂为盐酸、硝酸、硫酸、乙酸、草酸等中一种或几种,所述的助挤剂是指有利于挤压成型的物质,如田菁粉等。所述成型物的干燥和焙烧条件如下:干燥温度为100-160℃,干燥时间为6-10小时,所述的焙烧温度为600-750℃,焙烧时间为4-6小时,焙烧在含氧气氛中,优选空气气氛中进行。步骤(2)所述的碳酸氢铵溶液的用量与步骤(1)所得载体中间体的质量比为4:1-10:1,碳酸氢铵溶液的质量浓度为15%-25%。步骤(2)所述的密封热处理温度为120-170℃,处理时间为4-8小时,升温速率为5℃/min-20℃/min,密封热处理一般在高压反应釜中进行。本专利技术氧化铝载体的制备方法中,步骤(2)优选,在密封热处理之前进行密封预处理,预处理温度为60-100℃,恒温处理时间为2-4小时,预处理前的升温速率为10-20℃/min,预处理后的升温速率为5-10℃/min,而且预处理后的升温速率要比预处理前的低至少3本文档来自技高网
...

【技术保护点】
1.一种加氢保护催化剂载体,所述载体为氧化铝载体,包括主体氧化铝和棒状氧化铝,所述的主体氧化铝为具有微米级孔道的氧化铝,其中至少部分棒状氧化铝分布在主体氧化铝的外表面和孔直径D为5‑10μm的微米级孔道中,棒状氧化铝长度为1‑12μm,直径为100‑300 nm;所述载体的孔分布如下:孔直径为10nm以下的孔所占的孔容为总孔容的10%以下,孔直径为15‑35nm的孔所占的孔容为总孔容的30%‑50%,孔直径为100‑800nm的孔所占的孔容为总孔容的30%‑45%,孔直径大于1000nm的孔所占的孔容为总孔容的10%‑26%,优选为10%‑24%。

【技术特征摘要】
1.一种加氢保护催化剂载体,所述载体为氧化铝载体,包括主体氧化铝和棒状氧化铝,所述的主体氧化铝为具有微米级孔道的氧化铝,其中至少部分棒状氧化铝分布在主体氧化铝的外表面和孔直径D为5-10μm的微米级孔道中,棒状氧化铝长度为1-12μm,直径为100-300nm;所述载体的孔分布如下:孔直径为10nm以下的孔所占的孔容为总孔容的10%以下,孔直径为15-35nm的孔所占的孔容为总孔容的30%-50%,孔直径为100-800nm的孔所占的孔容为总孔容的30%-45%,孔直径大于1000nm的孔所占的孔容为总孔容的10%-26%,优选为10%-24%。2.按照权利要求1所述的载体,其特征在于:棒状氧化铝基本分布于主体氧化铝的外表面和微米级孔道中。3.按照权利要求1所述的载体,其特征在于:微米级孔道内棒状氧化铝的长度以0.3D-0.9D为主;主体氧化铝外表面的棒状氧化铝的长度以3-8μm为主。4.按照权利要求1所述的载体,其特征在于:在主体氧化铝的微米级孔道中,棒状氧化铝以无序相互交错的状态分布;至少部分棒状氧化铝的至少一端附着在主体的微米级孔道壁上,优选至少部分棒状氧化铝的至少一端结合在微米级孔道壁上,与主体氧化铝形成一体;进一步优选,微米级孔道中的棒状氧化铝的至少一端结合在微米级孔道壁上,与主体氧化铝形成一体。5.按照权利要求1或4所述的载体,其特征在于:在主体氧化铝的外表面上,棒状氧化铝以无序相互交错的状态分布;至少部分棒状氧化铝的一端附着在主体氧化铝的外表面上,优选至少部分棒状氧化铝的一端结合在主体氧化铝的外表面上,另一端向外伸出,与主体氧化铝形成一体;进一步优选,主体氧化铝的外表面上的棒状氧化铝的一端结合在主体氧化铝的外表面上,另一端向外伸出,与主体形成一体。6.按照权利要求1或4所述的载体,其特征在于:主体氧化铝的微米级孔道中棒状氧化铝的覆盖率占70%-95%,主体氧化铝的外表面上棒状氧化铝的覆盖率占70%-95%。7.按照权利要求1或4所述的载体,其特征在于:所述载体的性质如下:比表面积为140-290m2/g,孔容0.6-1.5mL/g,压碎强度为9-18N/mm。8.按照权利要求1或4所述的载体,其特征在于:所述载体中,由棒状氧化铝以无序相互交错形成的孔集中在100-800nm之间。9.权利要求1-8任一所述加氢保护催化剂载体的制备方法,包括:(1)制备载体中间体;(2)将载体中间体浸入碳酸氢铵溶液中,然后密封热处理,热处理后物料经干燥、焙烧,制得载体。10.按照权利要求9所...

【专利技术属性】
技术研发人员:关月明季洪海隋宝宽彭冲吕振辉佟佳
申请(专利权)人:中国石油化工股份有限公司中国石油化工股份有限公司大连石油化工研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1