掺杂Mg的p型Ⅲ族氮化物单晶及其制备方法和应用技术

技术编号:19550209 阅读:34 留言:0更新日期:2018-11-24 21:44
本发明专利技术公开了一种掺杂Mg的p型III族氮化物单晶及其制备方法和应用。所述制备方法包括:掺杂Mg的III族氮化物多晶、III族氮化物籽晶在超临界态的氨中,以及400~750℃、150MPa~600Mpa的条件下获得所述掺杂Mg的p型III族氮化物单晶。本发明专利技术提供的方法使用的掺杂多晶为原料,在矿化剂的作用下多晶原料溶解后,掺杂Mg与氨基及B、Al,Ga,In等III族元素形成络合物,由于存在不同温区,不同温区的饱和浓度不同,在浓度梯度的驱动下络合物输运到籽晶处析出结晶,所述氨热法的生长条件为近热力学平衡,晶体生长界面与溶液处的温度梯度接近于零,生长过程中不易产生裂纹,且可以生长出位错密度较低的体单晶。

P-type III nitride single crystals doped with Mg and their preparation methods and Applications

The invention discloses a p-type III nitride single crystal doped with Mg, a preparation method and application thereof. The preparation method includes: Mg-doped III nitride polycrystals, III nitride seed crystals in supercritical ammonia, and P-type III nitride single crystals doped with Mg are obtained at 400-750 C and 150 MPa-600 Mpa. The method of the invention uses doped polycrystalline material as raw material, after dissolving the polycrystalline material under the action of mineralizer, doped Mg forms complexes with amino group and III elements such as B, Al, Ga, In. Due to the existence of different temperature zones and different saturation concentration in different temperature zones, the complexes are transported to seed crystals and precipitated under the drive of concentration gradient. Crystallization, the growth condition of ammonia thermal method is near thermodynamic equilibrium, the temperature gradient between crystal growth interface and solution is close to zero, cracks are not easy to occur during the growth process, and bulk single crystals with low dislocation density can be grown.

【技术实现步骤摘要】
掺杂Mg的p型III族氮化物单晶及其制备方法和应用
本专利技术涉及一种p型III族氮化物单晶,特别涉及一种掺杂Mg的p型III族氮化物单晶及其制备方法和应用,属于半导体器件领域。
技术介绍
III族氮化物(III族氮化物,GaN,AIN,InN及其合金)是化合物半导体,具有宽的禁带和直接跃迁型带隙结构,是光电器件及功率器件的理想衬底。Mg掺杂到GaN晶体中可以得到p型GaN,p型半导体材料是制造高性能的LED和激光二极管(LD)的前提,所以p型掺杂GaN及其他III族氮化物半导体材料的实现对光电子器件发展具有巨大推动作用。现有的Mg掺杂生长的方法多为MOCVD等外延方法,技术存在诸多问题:空穴浓度较低,晶体质量不高,表面形貌变差等。
技术实现思路
针对现有技术的不足,本专利技术的目的在于提供一种掺杂Mg的p型III族氮化物单晶及其制备方法和应用。为实现前述专利技术目的,本专利技术采用的技术方案包括:本专利技术提供了一种掺杂Mg的p型III族氮化物单晶的制备方法,包括:以掺杂Mg的III族氮化物多晶和III族氮化物籽晶作为原料,采用氨热法制备III族氮化物单晶。进一步的,所述方法包括:掺杂Mg的III族氮化物多晶、III族氮化物籽晶在超临界态的氨中,以及150MPa~600Mpa的条件下获得所述掺杂Mg的p型III族氮化物单晶。在一些较为具体的实施方案中,所述方法包括:将掺杂Mg的III族氮化物多晶和矿化剂置于所述高压反应装置原料区,将III族氮化物籽晶置于所述高压反应装置的生长区;向所述高压反应装置内充填液氨,加热所述高压反应装置使所述液氨形成超临界态的氨,并在所述高压反应装置的原料区和生长区形成温度梯度,于150MPa~600Mpa的生长压力下生长14~100天,获得所述掺杂Mg的p型III族氮化物单晶;优选的,在负的温度溶解度系数的矿化剂体系中,所述高压反应装置原料区的温度为450~550℃,生长区的温度为550~650℃;优选的,在正的温度溶解度系数矿化剂体系中,所述高压反应装置原料区的温度为550~650℃,所述生长区的温度为450~550℃。在一些较为具体的实施方案中,所述方法包括:在惰性气氛下加入所述矿化剂。在一些较为具体的实施方案中,所述高压反应装置中液氨的填充度为50~80%。在一些较为具体的实施方案中,所述原料区和生长区分隔设置。在一些较为具体的实施方案中,所述掺杂Mg的III族氮化物多晶包括化学合成法(例如气相合成法或液相合成法)生长的掺杂Mg的III族氮化物多晶。本专利技术还提供了一种由所述的制备方法获得的掺杂Mg的p型III族氮化物单晶。本专利技术还提供了所述掺杂Mg的p型III族氮化物单晶于半导体器件领域的应用。本专利技术还提供了一种p型III族氮化物单晶衬底,包括所述掺杂Mg的p型III族氮化物单晶。与现有技术相比,本专利技术的优点包括:本专利技术提供的方法使用高纯的掺杂多晶为原料,在矿化剂的作用下多晶原料溶解后,掺杂的Mg元素与氨基及B、Al,Ga,In等III族元素形成络合物,由于存在不同温区,不同温区的饱和浓度不同,在浓度梯度的驱动下络合物输运到籽晶处析出结晶,所述氨热法的生长条件为近热力学平衡,晶体生长界面与溶液处的温度梯度接近于零,生长过程中不易产生裂纹,且可以生长出位错密度较低的体单晶;本专利技术提供的方法生产成本低,原料利用率高,适于大规模量产。附图说明图1是本专利技术一典型实施案例中氨热法生长P型III族氮化物单晶的示意图;具体实施方式鉴于现有技术中的不足,本案专利技术人经长期研究和大量实践,得以提出本专利技术的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。本专利技术实施例一方面提供了本专利技术提供了一种掺杂Mg的p型III族氮化物单晶的制备方法,包括:以掺杂Mg的III族氮化物多晶和III族氮化物籽晶作为原料,采用氨热法制备III族氮化物单晶。进一步的,所述方法包括:掺杂Mg的III族氮化物多晶、III族氮化物籽晶在超临界态的氨中,以及400~750℃、150MPa~600Mpa的条件下获得所述掺杂Mg的p型III族氮化物单晶。请参阅图1,在一些较为具体的实施方案中,所述方法包括:将掺杂Mg的III族氮化物(本专利技术中所述III族氮化物包括BN,AlN,GaN,InN等III族氮化物)多晶和矿化剂置于所述高压反应装置原料区,将III族氮化物籽晶置于所述高压反应装置的生长区;向所述高压反应装置内充填液氨,加热所述高压反应装置使所述液氨形成超临界态的氨,并在所述高压反应装置的原料区和生长区形成温度梯度,于150MPa~600Mpa的生长压力下生长14~100天,获得所述掺杂Mg的p型III族氮化物单晶;优选的,在负的温度溶解度系数的矿化剂体系中,所述高压反应装置原料区的温度为450~550℃,生长区的温度为550~650℃;优选的,在正的温度溶解度系数矿化剂体系中,所述高压反应装置原料区的温度为550~650℃,所述生长区的温度为450~550℃。在一些较为具体的实施方案中,所述方法包括:将掺杂Mg的III族氮化物多晶(本专利技术中所述III族氮化物包括BN,AlN,GaN,InN等III族氮化物)置于高压反应装置的原料区,然后在惰性气氛下加入矿化剂;优选的,所述惰性气氛包括氩气气氛、氮气气氛,但不限于此。在一些较为具体的实施方案中,所述方法包括:将所述高压反应装置冷却至室温,获得所述掺杂p型III族氮化物单晶。在一些较为具体的实施方案中,所述高压反应装置中液氨的填充度为50~80%。在一些较为具体的实施方案中所述原料区和生长区分隔设置。在一些较为具体的实施方案中,所述掺杂Mg的III族氮化物多晶包括化学合成法生长的掺杂Mg的III族氮化物多晶。优选的,所述化学合成法包括HVPE(HydrideVaporPhaseEpitaxy,氢化物气相外延)LPE(liquidphaseepitaxy,液相外延)等方法。本专利技术实施例另一方面还提供了一种由所述的制备方法获得的掺杂Mg的p型III族氮化物单晶。本专利技术实施例另一方面还提供了所述掺杂Mg的p型III族氮化物单晶于半导体器件领域的应用;例如全色显示器件,光放大器、发光二极管LED,激光器LD,高频率电子器件等半导体器件。本专利技术实施例另一方面还提供了一种p型III族氮化物单晶衬底,包括所述掺杂Mg的p型III族氮化物单晶。请参阅图1,具体的,所述方法可以包括如下步骤:(1)使用化学方法生长掺杂Mg的III族氮化物多晶颗粒,并将其作为生长原料;(2)向高压釜中填充原料(具体步骤可以是先向高压釜中原料区加入掺杂Mg的III族氮化物多晶颗粒,然后在氮气气氛的手套箱中向所述高压釜中原料区加入矿化剂),在生长区放入氮化镓籽晶,原料区和生长区之间用挡板隔开;(3)使用液氨填充系统,在高压釜中填充液氨,填充度为50~80%;(4)把原料装载完毕的高压釜放入两温区的立式管式炉中加热,根据添加矿化剂的不同设置不同的温区(在正的温度溶解度系数矿化剂体系中,所述生长区的温度为450~550℃,原料区的温度为550~650℃;在负的温度溶解度系数矿化剂体系中,所述生长区的温度为550~650℃,原料区的温度为450~550℃),生长压力为150MPa~600MPa,生长时间为1本文档来自技高网...

【技术保护点】
1.一种掺杂Mg的p型III族氮化物单晶的制备方法,其特征在于包括:以掺杂Mg的III族氮化物多晶和III族氮化物籽晶作为原料,采用氨热法制备III族氮化物单晶。

【技术特征摘要】
1.一种掺杂Mg的p型III族氮化物单晶的制备方法,其特征在于包括:以掺杂Mg的III族氮化物多晶和III族氮化物籽晶作为原料,采用氨热法制备III族氮化物单晶。2.根据权利要求1所述掺杂Mg的p型III族氮化物单晶的制备方法,其特征在于包括:掺杂Mg的III族氮化物多晶、III族氮化物籽晶在超临界态的氨中,以及150MPa~600Mpa的条件下获得所述掺杂Mg的p型III族氮化物单晶。3.根据权利要求2所述掺杂Mg的p型III族氮化物单晶的制备方法,其特征在于包括:将掺杂Mg的III族氮化物多晶和矿化剂置于所述高压反应装置原料区,将III族氮化物籽晶置于所述高压反应装置的生长区;向所述高压反应装置内充填液氨,加热所述高压反应装置使所述液氨形成超临界态的氨,并在所述高压反应装置的原料区和生长区形成温度梯度,于150MPa~600Mpa的生长压力下生长14~100天,获得所述掺杂Mg的p型III族氮化物单晶;优选的,在负的温度溶解度系数的矿化剂体系中,所述高压反应装置原料区的温度为450~550℃,生长...

【专利技术属性】
技术研发人员:李腾坤任国强苏旭军高晓冬刘宗亮王建峰徐科
申请(专利权)人:中国科学院苏州纳米技术与纳米仿生研究所
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1