一种制备钴基氧化物超薄纳米片的方法技术

技术编号:17692993 阅读:63 留言:0更新日期:2018-04-14 09:42
本发明专利技术涉及一种制备钴基氧化物超薄纳米片的方法,属于纳米材料制备技术领域。本方法在低温液相搅拌条件下即可制得有机前驱体,再通过严格控制煅烧温度、煅烧时间煅烧气氛,即可制得钴基氧化物超薄纳米片,惰性气氛中煅烧可得到氧化亚钴纳米片。同时将本方法中的一部分钴盐代替为乙酸镍,乙酸锰,均可以得到具有尖晶石结构的超薄钴基氧化物纳米片。本发明专利技术方法可以直接在室温下合成前驱体,快捷高效,煅烧步骤简单省时。本方法制备的钴基氧化物纳米片结晶性良好,厚度分布均匀。本方法使用的原料成本低廉、易于获得、且对环境污染较小,反应条件温和且易于控制,反应溶剂可直接回收再利用,因而易于实现工业化生产。

A method for preparation of cobalt based oxide ultra-thin nanoscale

The invention relates to a method for preparing cobalt based oxide super thin nanoscale, which belongs to the technical field of nanomaterial preparation. This method in low temperature liquid phase mixing conditions prepared by organic precursor, and through strict control of calcination temperature and calcination time calcination atmosphere, can be made of cobalt based oxide ultrathin nanosheets, calcined in inert atmosphere can be obtained by cobaltous oxide nanosheets. At the same time, a part of the cobalt salt in this method was replaced with nickel acetate and manganese acetate, and the ultrathin cobalt based oxide nanoscale with spinel structure could be obtained. The method of the invention can directly synthesize the precursor at room temperature, which is fast and efficient, and the calcination step is simple and time saving. The cobalt based oxide nanoscale prepared by this method has good crystallinity and uniform thickness distribution. The raw material is cheap, easy to obtain, and has little environmental pollution, mild reaction conditions and easy control. The reaction solvent can be directly recovered and reused, so it is easy to achieve industrial production.

【技术实现步骤摘要】
一种制备钴基氧化物超薄纳米片的方法
本专利技术涉及一种制备钴基氧化物超薄纳米片的方法,属于纳米材料制备

技术介绍
自从2004年石墨烯成功地使用机械方法从石墨中剥离出来,人们开始逐渐重视对无机超薄二维材料的开发和应用。与块体材料相比,无机超薄二维材料由于尺度原因,通常表现出大的比表面积,良好的机械性能,优异的光学和电学特性等。此外由于无机超薄二维结构表面积极大,可以暴露大量配位不饱和的表面原子,且这些原子通常可以成为化学反应或催化反应的活性位点,因此,越来的越多的无机超薄二维材料被开发应用于能源催化和环境催化等领域,例如:光催化,电催化,有机物催化等。因此,设计开发新型的无机超薄二维材料的制备方法步进可以丰富二维材料的种类,扩展其在催化领域的应用还为促进对于催化机理等研究提供指导,具有十分重要的科学意义。目前,制备二维材料的方法主要有物理剥离法,化学气相沉积法(CVD),液相化学合成法等。物理剥离的方法适用于本身具有类石墨烯结构的无机材料,例如层状过渡金属磷化物(MoS2,WS2,TiS2),层状过渡金属碳/氮化合物(MXene:Ti3C2Tx,Mo2CTx),层状黑鳞,g-C3N4等。物理剥离的方法可以得到分散性良好且近单原子的尺度,但耗时长,量较低,不能用于大量制备。化学气相沉积可以制备超薄,具有良好形貌,机械性能优良的层状化合物,但产量相对较低,操作工艺复杂,能耗大。相比而言,液相化学合成法能够大量制备形貌可控的无机超薄材料。与前者不同,液相化学合成法不仅能合成具有层状结构的无机纳米片,也同样适用于本身结构是非层状的无机材料,例如MnO2,ZnO,CeO2,Co3O4等。液相法的发展极大地扩展了二维材料的应用领域,使得低能耗,高效率制备无机二维材料的方法进一步扩展。而目前液相化学法制备无机二维纳米片通常使用有机溶剂,且需要加入大量的表面活性剂或者模板剂,反应条件一般为高温高压水热。一方面有机溶剂分散的纳米片难以高效率收集,另一方面,有机溶剂和表面活性剂的使用也会带来诸多的环境问题。
技术实现思路
本专利技术的目的是提出一种制备钴基氧化物超薄纳米片的方法,利用常规条件(常压,温度<100℃)、非有机溶剂、无模板的合成方法制备纳米片,并且在合成过程中,循环利用料和废液,保护环境,缩小生产成本。本专利技术提出的制备钴基氧化物超薄纳米片的方法,包括以下步骤:(1)制备超薄钴基氧化物前驱体,包括以下步骤:(1-1)将低碳醇缓慢预热至30~60℃,向温热的醇中加入质量为所用低碳醇质量分数0.8%~1.5%的四水合乙酸钴或水合乙酸盐混合物,再加入质量为低碳醇质量分数0.01%~0.25%的乙酸钠作为反应添加剂,剧烈搅拌至全部溶解,得到粉红色溶液;(1-2)继续恒温剧烈搅拌0.5~3小时,缓慢降温至室温,得到粉红色悬浊液,将粉红色悬浊液离心分离,用醇多次洗涤离心分离得到的固体,在固体中加入固体质量20~50倍的去离子水,剧烈搅拌、震荡,得到超薄钴基氧化物前驱体溶胶;(1-3)将上述步骤(1-2)的超薄钴基氧化物前驱体溶胶加热至40~60℃,保温30分钟,然后采用超速离心机进行离心分离,用液氮急速冷冻离心分离得到的固体,并在真空冷冻干燥机中干燥20~30小时,得到超薄钴基氧化物前驱体;(2)对上述步骤(1)制备的超薄钴基氧化物前驱体进行粉碎,研磨,过500目筛,高温炉在空气或氮气下,预热至270~420℃,温度稳定后,将前驱体放入高温炉保温3~15分钟,冷却至室温,得到钴基氧化物超薄纳米片。上述方法中,所述的低碳醇为乙醇、正丙醇或正丁醇。上述方法中,所述的水合乙酸盐混合物为四水乙酸钴、四水乙酸镍和四水乙酸锰的混合物,四水乙酸钴、四水乙酸镍和四水乙酸锰混合的摩尔比为:2:x:1-x,0≤x≤1。本专利技术提出的制备钴基氧化物超薄纳米片的方法,其优点是:1、本专利技术提出的方法可以在室温条件下快速大量制备钴基氧化物前驱体,合成纳米片时,煅烧步骤简单,煅烧时间短,可实现对钴基氧化物超薄纳米片的短时高效生产。2、本专利技术方法制备的钴基氧化物超薄纳米片,厚度可达到1-2nm,二维尺寸1-2um,而且结晶性良好,厚度分布均匀。3、本方法使用的原料成本低廉、易于获得、且对环境污染较小,反应条件温和且易于控制,反应溶剂可直接回收再利用,可以做到真正零排放,因而易于实现工业化生产,具有十分重要的意义。附图说明图1是本专利技术方法制备的钴基氧化物超薄纳米片的X射线衍射结果(XRD)。图2是本专利技术方法制备的钴基氧化物超薄纳米片的扫描电镜图(SEM)。图3是本专利技术方法制备的钴基氧化物超薄纳米片的原子力显微镜厚度图(AFM)。具体实施方式本专利技术提出的制备钴基氧化物超薄纳米片的方法,包括以下步骤:(1)制备超薄钴基氧化物前驱体,包括以下步骤:(1-1)将低碳醇缓慢预热至30~60℃,向温热的醇中加入质量为所用低碳醇质量分数0.8%~1.5%的四水合乙酸钴或水合乙酸盐混合物,再加入质量为低碳醇质量分数0.01%~0.25%的乙酸钠(NaAc)作为反应添加剂,剧烈搅拌至全部溶解,得到粉红色溶液;(1-2)继续恒温剧烈搅拌0.5~3小时,缓慢降温至室温,得到粉红色悬浊液,将粉红色悬浊液离心分离,用醇多次洗涤离心分离得到的固体,以除去其中残留的乙酸盐,洗涤后的醇可以直接回收用于再次生产。在固体中加入固体质量20~50倍的去离子水,剧烈搅拌、震荡,得到超薄钴基氧化物前驱体溶胶;(1-3)将上述步骤(1-2)的超薄钴基氧化物前驱体溶胶加热至40~60℃,保温30分钟,然后采用超速离心机进行离心分离,用液氮急速冷冻离心分离得到的固体,并在真空冷冻干燥机中干燥20~30小时,得到超薄钴基氧化物前驱体;(2)对上述步骤(1)制备的超薄钴基氧化物前驱体进行粉碎,研磨,过500目筛,高温炉在空气或氮气下,预热至270~420℃,温度稳定后,将前驱体放入高温炉保温3~15分钟,冷却至室温,得到钴基氧化物超薄纳米片。上述方法中,所述的低碳醇可以为乙醇、正丙醇或正丁醇。上述方法中,所述的水合乙酸盐混合物为四水乙酸钴(Co(Ac)2·4H2O)、四水乙酸镍(Ni(Ac)2·4H2O)和四水乙酸锰(Mn(Ac)2·4H2O的混合物,四水乙酸钴(Co(Ac)2·4H2O)、四水乙酸镍(Ni(Ac)2·4H2O)和四水乙酸锰混合的摩尔比为:2:x:1-x,0≤x≤1。将本专利技术方法制备得到的纳米片进行XRD测试,结果如图1所示,为结晶性良好的尖晶石结构。将得到的纳米片进行SEM测试和AFM形貌测试,结果如图2和3所示,氧化物为纳米片状,二维尺度1-2um,厚度1-2nm之间。下面介绍本专利技术方法的实施例:实施例一:(1)制备超薄钴基氧化物前驱体,包括以下步骤:(1-1)将100g乙醇缓慢预热至40℃,向温热的乙醇中加入1g的四水合乙酸钴,再加入15mg的乙酸钠(NaAc)作为反应添加剂,剧烈搅拌至全部溶解,得到粉红色溶液;(1-2)继续恒温剧烈搅拌1.5小时,缓慢降温至室温,得到粉红色悬浊液,将粉红色悬浊液离心分离,用醇多次洗涤离心分离得到的固体,以除去其中残留的乙酸盐,洗涤后的醇可以直接回收用于再次生产。在固体中加入固体质量20倍的去离子水,剧烈搅拌、震荡,得到超薄钴基本文档来自技高网
...
一种制备钴基氧化物超薄纳米片的方法

【技术保护点】
一种制备钴基氧化物超薄纳米片的方法,其特征在于该方法包括以下步骤:(1)制备超薄钴基氧化物前驱体,包括以下步骤:(1‑1)将低碳醇缓慢预热至30~60℃,向温热的醇中加入质量为所用低碳醇质量分数0.8%~1.5%的四水合乙酸钴或水合乙酸盐混合物,再加入质量为低碳醇质量分数0.01%~0.25%的乙酸钠作为反应添加剂,剧烈搅拌至全部溶解,得到粉红色溶液;(1‑2)继续恒温剧烈搅拌0.5~3小时,缓慢降温至室温,得到粉红色悬浊液,将粉红色悬浊液离心分离,用醇多次洗涤离心分离得到的固体,在固体中加入固体质量20~50倍的去离子水,剧烈搅拌、震荡,得到超薄钴基氧化物前驱体溶胶;(1‑3)将上述步骤(1‑2)的超薄钴基氧化物前驱体溶胶加热至40~60℃,保温30分钟,然后采用超速离心机进行离心分离,用液氮急速冷冻离心分离得到的固体,并在真空冷冻干燥机中干燥20~30小时,得到超薄钴基氧化物前驱体;(2)对上述步骤(1)制备的超薄钴基氧化物前驱体进行粉碎,研磨,过500目筛,高温炉在空气或氮气下,预热至270~420℃,温度稳定后,将前驱体放入高温炉保温3~15分钟,冷却至室温,得到钴基氧化物超薄纳米片。...

【技术特征摘要】
1.一种制备钴基氧化物超薄纳米片的方法,其特征在于该方法包括以下步骤:(1)制备超薄钴基氧化物前驱体,包括以下步骤:(1-1)将低碳醇缓慢预热至30~60℃,向温热的醇中加入质量为所用低碳醇质量分数0.8%~1.5%的四水合乙酸钴或水合乙酸盐混合物,再加入质量为低碳醇质量分数0.01%~0.25%的乙酸钠作为反应添加剂,剧烈搅拌至全部溶解,得到粉红色溶液;(1-2)继续恒温剧烈搅拌0.5~3小时,缓慢降温至室温,得到粉红色悬浊液,将粉红色悬浊液离心分离,用醇多次洗涤离心分离得到的固体,在固体中加入固体质量20~50倍的去离子水,剧烈搅拌、震荡,得到超薄钴基氧化物前驱体溶胶;(1-3)将上述步骤(1-2)的超薄钴基氧化物前驱体溶胶加...

【专利技术属性】
技术研发人员:刘向峰高睿黄淇曾子建胡中波
申请(专利权)人:中国科学院大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1