一种智能打磨方法技术

技术编号:17412639 阅读:45 留言:0更新日期:2018-03-07 08:42
本发明专利技术公开了一种智能打磨方法,包括以下步骤:机器人按照预定轨迹运动,使浮动打磨结构的浮动部或浮动部前部连接的打磨工具接触到打磨目标表面并相对于打磨目标运动,得到机器人运动轨迹坐标数据1和位移传感器数据2;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1和数据2在特定坐标系下进行叠加,获得打磨目标的实际特征数据3;获取特定坐标系下打磨目标的理论参考数据4;数据3减去数据4,获得打磨目标的待打磨量数据6,并根据数据6的特征,制定打磨策略。通过本发明专利技术能制定有针对性的打磨策略,提高打磨效率和打磨精度。

An intelligent grinding method

The invention discloses a grinding method of intelligent robot, which comprises the following steps: according to the predetermined trajectory, the floating structure of floating grinding or floating part connected to the target surface contact grinding tool grinding and polishing are relative to the target motion, the robot trajectory coordinate data of 1 and 2 displacement sensor data matrix and rotation transformation; the matrix space point translational transformation between 1 and 2, the data of data in a specific coordinate overlay, the actual data obtained from the goal of the 3 characteristics of grinding; theoretical reference data to obtain the specific coordinate grinding target of 4; 3 minus 4 data data, obtain the grinding target to be polished according to the data of 6. 6 data characteristics, formulate strategy of grinding. Through the invention, a targeted grinding strategy can be formulated to improve the grinding efficiency and the grinding precision.

【技术实现步骤摘要】
一种智能打磨方法
本专利技术涉及智能机器人领域,特别是一种智能打磨方法。
技术介绍
目前我国在金属制品生产中普遍采用熟练工人通过电、气动研磨工具手工完成。手工打磨劳动强度大、费时、效率低,且打磨时产生的易燃易爆粉尘,对操作工人来说无疑是存在潜在危险。现在也有厂家采用机器人进行打磨,但传统的机器人打磨方法都采用力传感器作为测量元件,实时监测打磨压力的大小并反馈至机器人系统,再由机器人系统控制机器人改变轨迹,以达到恒力打磨的效果。如申请号为201310746856.9的专利申请“一种抛光打磨力-位混合控制方法和系统”,公开了一种抛光打磨力-位混合控制方法和系统,方法包括:压力传感器获得打磨工具与加工件之间的当前打磨力Fc;比较器计算所述打磨工具与加工件之间的期望打磨力Fd与所述当前打磨力Fc之间的差值;模糊控制器根据所述差值的变化率Ec,采用模糊控制算法输出控制变量U控制打磨工具与加工件之间的打磨力,该方法虽然在打磨抛光机器人与外部环境产生接触力时提高控制精度,保证打磨过程中打磨力的恒定。但类似于该申请通过力传感器来控制打磨精度的方法,主要存在的缺点有:(1)实时性差;检测到力的变化时再控制机器人运动,通过机器人运动状态的变化达到恒力效果,机器人的反应速度难以跟上力变化的速度,因此恒力打磨效果差,打磨效率低;(2)系统复杂;开发者需要获取力传感器的信号,分析处理,得出控制策略,再控制机器人运动;(3)无准确的位置感知;恒力打磨只是力的控制,没有位置的控制,难以准确获取待打磨的量和打磨后的剩余量。对于工件位置和工件尺寸的测量,现有技术一般采用激光测量或工业相机等光学技术。该方法主要存在的缺点有:(1)打磨现场有大量粉尘产生,有的场合还会喷水或冷却液。这些都会影响测量。(2)打磨时会产生振动,对激光测量和工业相机的抗振性能提出来很高的要求。(3)实际打磨时,由于打磨力的作用,工件有可能会变形,机器人本体也可能有轻微形变,磨料磨具也可能会变形。而实际在用激光测量和工业相机测量待磨工件时,并没有打磨力的存在,这些变形还没有产生,所以测量不到这些变形量,影响了最终的打磨效果。
技术实现思路
本专利技术公开了一种智能打磨方法,浮动打磨结构包含有位移传感器,使得整个打磨系统(包括机器人、浮动打磨结构、打磨工具、位移传感器、待磨工件及其它夹具)都是位置感知系统的一部分,浮动打磨结构中任意部分的变形都最终反应在位移传感器的输出上。因此,能通过运动轨迹曲线与位移传感器位移数据结合,拟合出打磨目标的实际尺寸曲线,从而制定有针对性的打磨策略,提高打磨效率和打磨精度。为实现上述目的,本专利技术的技术方案为:一种智能打磨方法,其特征在于包括以下步骤:S1.机器人打磨设备包括机器人、浮动打磨结构和打磨工具,其中所述浮动打磨结构包括固定部、能相对固定部移动的浮动部以及测量固定部和浮动部相对位移的位移传感器;按照打磨工作的需求安装机器人、浮动打磨结构、打磨目标和打磨工具;S2.机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标表面并相对于打磨目标运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1和位移传感器数据2;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1和数据2在特定坐标系下进行叠加,获得打磨目标的实际特征数据3;所述特定坐标系为大地坐标系或基坐标系或工具坐标系或用户坐标系;S3.获取特定坐标系下打磨目标的理论参考数据4,数据4的获取方法包括以下方式的一种或多种:(1)打磨目标自身的理论数据;(2)通过线性拟合方法分析数据3获得理论参考数据4;(3)按步骤S2的方法获取打磨目标周边位置或类似位置的实际特征数据5,通过线性拟合方法计算获得理论参考数据4;S4.数据3减去数据4,获得打磨目标的待打磨量数据6,并根据数据6的特征,制定打磨策略;S5.采用与步骤S1相同的机器人、浮动打磨结构、打磨目标和打磨工具的安装方式对打磨目标进行打磨。进一步的,所述S2和S3的步骤可以替换为:所述S2和S3的步骤替换为:S2.获取特定坐标系下打磨目标的理论参考数据4,数据4的获取方法包括以下方式的一种或两种:(1)打磨目标自身的理论数据;(2)机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标周边位置或类似位置的表面并相对于打磨目标周边位置或类似位置运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1a和位移传感器数据2a;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1a和数据2a在特定坐标系下进行叠加,获得打磨目标周边位置或类似位置的实际特征数据5,再通过线性拟合方法计算获得理论参考数据4;S3.机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标表面并相对于打磨目标运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1和位移传感器数据2;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1和数据2在特定坐标系下进行叠加,获得打磨目标的实际特征数据3;所述特定坐标系为大地坐标系或基坐标系或工具坐标系或用户坐标系。进一步的,所述步骤S1中,所述浮动部能相对固定部轴向或/和径向浮动。进一步的,所述打磨策略包括:(1)调整机器人运动轨迹;(2)调整打磨时间、打磨压力和打磨次数;(3)更换打磨工具和/或磨料;(4)调整打磨工具转速。进一步的,还包括步骤S6:S6.机器人打磨设备打磨的同时获取机器人运动轨迹坐标数据和位移传感器数据,以与步骤S2或S3相同的扫描方法获得打磨后打磨目标的实际特征数据3i,并与打磨目标的理论参考数据4做比对,以调整打磨策略或判断打磨是否结束。进一步的,所述步骤S5中,机器人打磨设备在打磨工作的同时采集机器人坐标数据和位移传感器数据。。优选的,所述浮动打磨结构恒力浮动。优选的,所述打磨工具或浮动打磨结构接触到打磨目标及打磨目标周边位置或类似位置表面进行扫描和/或打磨时,浮动打磨结构采用相同的恒力。进一步的,所述步骤S1中,机器人、浮动打磨结构、打磨目标和打磨工具的安装方式为:(1)机器人前端连接浮动打磨结构,浮动打磨结构前端连接打磨工具,打磨目标固定在其他地方;(2)机器人前端连接浮动打磨结构,浮动打磨结构前端连接打磨目标,打磨工具固定在其他地方;(3)机器人前端连接打磨工具,打磨目标和浮动打磨结构连接并固定在其他地方;(4)机器人连接打磨目标,打磨工具和浮动打磨结构连接并固定在其他地方。以上所述的智能打磨方法,可根据运动轨迹坐标数据与位移传感器数据的结合确定打磨目标表面待打磨部位的形状和尺寸以及打磨目标表面待打磨的部位的位置,这里所述的待打磨部位,包括焊缝、飞边、毛刺或其他待打磨物体等,拟合出打磨目标的实际尺寸曲线,从而根据实际尺寸曲线,控制机器人打磨设备快速到达待打磨的位置,并根据待打磨的部位的形状和尺寸,针对性的设置打磨时间和打磨压力,本专利技术具有以下优点:(1)适应性好:本专利技术采用了浮动打磨结构,浮动部能相对固定部浮动。在打磨和位置测量时,浮动功能能够自动的适应工件本身的尺寸差异和工件的定位精度误差。且采用打磨工具或浮动打磨结构和被测物体接触的方法来测量位置和尺寸数据,因此粉尘和振动对测量的影响小。(2)准确的位置感知:浮动打磨结构内部有位移传感器,能测量本文档来自技高网
...
一种智能打磨方法

【技术保护点】
一种智能打磨方法,其特征在于包括以下步骤:S1.机器人打磨设备包括机器人、浮动打磨结构和打磨工具,其中所述浮动打磨结构包括固定部、能相对固定部移动的浮动部以及测量固定部和浮动部相对位移的位移传感器;按照打磨工作的需求安装机器人、浮动打磨结构、打磨目标和打磨工具;S2.机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标表面并相对于打磨目标运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1和位移传感器数据2;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1和数据2在特定坐标系下进行叠加,获得打磨目标的实际特征数据3;所述特定坐标系为大地坐标系或基坐标系或工具坐标系或用户坐标系;S3.获取特定坐标系下打磨目标的理论参考数据4,数据4的获取方法包括以下方式的一种或多种:(1)打磨目标自身的理论数据;(2)通过线性拟合方法分析数据3获得理论参考数据4;(3)按步骤S2的方法获取打磨目标周边位置或类似位置的实际特征数据5,通过线性拟合方法计算获得理论参考数据4;S4.数据3减去数据4,获得打磨目标的待打磨量数据6,并根据数据6的特征,制定打磨策略;S5.采用与步骤S1相同的机器人、浮动打磨结构、打磨目标和打磨工具的安装方式对打磨目标进行打磨。...

【技术特征摘要】
1.一种智能打磨方法,其特征在于包括以下步骤:S1.机器人打磨设备包括机器人、浮动打磨结构和打磨工具,其中所述浮动打磨结构包括固定部、能相对固定部移动的浮动部以及测量固定部和浮动部相对位移的位移传感器;按照打磨工作的需求安装机器人、浮动打磨结构、打磨目标和打磨工具;S2.机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标表面并相对于打磨目标运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1和位移传感器数据2;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1和数据2在特定坐标系下进行叠加,获得打磨目标的实际特征数据3;所述特定坐标系为大地坐标系或基坐标系或工具坐标系或用户坐标系;S3.获取特定坐标系下打磨目标的理论参考数据4,数据4的获取方法包括以下方式的一种或多种:(1)打磨目标自身的理论数据;(2)通过线性拟合方法分析数据3获得理论参考数据4;(3)按步骤S2的方法获取打磨目标周边位置或类似位置的实际特征数据5,通过线性拟合方法计算获得理论参考数据4;S4.数据3减去数据4,获得打磨目标的待打磨量数据6,并根据数据6的特征,制定打磨策略;S5.采用与步骤S1相同的机器人、浮动打磨结构、打磨目标和打磨工具的安装方式对打磨目标进行打磨。2.根据权利要求1所述的智能打磨方法,其特征在于:所述S2和S3的步骤替换为:S2.获取特定坐标系下打磨目标的理论参考数据4,数据4的获取方法包括以下方式的一种或两种:(1)打磨目标自身的理论数据;(2)机器人按照预定轨迹运动,使打磨工具或浮动打磨结构接触到打磨目标周边位置或类似位置的表面并相对于打磨目标周边位置或类似位置运动,进行扫描和/或打磨,得到机器人运动轨迹坐标数据1a和位移传感器数据2a;通过空间点的平移关系转换矩阵和旋转关系转换矩阵运算,将数据1a和数据2a在特定坐标系下进行叠加,获得打磨目标周边位置或类似位置的实际特征数据5,再通过线性拟合方法计算获得理论参考数据4;S3.机器人按照预定轨迹运动,使打磨工具或浮动打...

【专利技术属性】
技术研发人员:黄约刘运毅唐明福黎相成
申请(专利权)人:南宁宇立仪器有限公司
类型:发明
国别省市:广西,45

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1