一种轻量化机械臂的统一设计方法技术

技术编号:15792272 阅读:100 留言:0更新日期:2017-07-10 00:00
本发明专利技术公开了一种轻量化机械臂的统一设计方法,在有限元中进行机械臂的结构优化得到新的结构参数,将优化结果应用于驱动系统的设计中,完成驱动系统在ADAMS中的动态分析,更新关节参数,将更新后的结果反馈给结构设计模块进一步优化结构参数,重复进行这个过程直到满足设计要求为止。此设计方法在优化过程中建立结构设计和驱动系统两个模块之间的联系,从全局把控机械臂的组成元素,寻求最优结果,实现机械臂的轻量化,其准确性高,优化效果好。

【技术实现步骤摘要】
一种轻量化机械臂的统一设计方法
本专利技术涉及机器人领域,具体涉及一种轻量化机械臂的统一设计方法。
技术介绍
大多数现有的机械臂有明显缺点:负载自重比小、结构笨重、高功耗等。而在高性能和特殊的任务中要求具有轻量化的机械臂,比如空间操纵。为了解决上面的问题,许多研究人员推出了机械臂的轻量化设计,这是一个复杂的系统包括驱动系统设计、结构设计、动态控制等。驱动系统在机械臂的质量分布上占居很大比例,所以一些研究人员对构成驱动系统的电机和齿轮进行轻量化设计以此来实现机械臂的轻量化,然而这些研究仅从驱动系统出发,没有考虑机械臂的结构。另一些研究则是从机械臂的结构出发,利用有限元对机械臂的拓扑结构进行优化设计,从而提高机械臂轻量化程度。然而仅从驱动系统或者拓扑结构这样单一的角度出发,忽略驱动系统和结构的相互影响,往往并不能使机械臂的优化达到到最优效果。
技术实现思路
本专利技术就是针对现有技术的不足,提供了从全局把控机械臂的组成元素、优化效果最佳的轻量化机械臂的统一设计方法。为了实现上述目的,本专利技术所设计的一种轻量化机械臂的统一设计方法,其特征在于,包括以下步骤:S1.结构优化:对机械臂尺寸进行初步定位,建立三维模型,将三维模型导入有限元中,定义优化目标函数、设计变量、约束条件的初始值,并基于二次拉格朗日算法完成结构的首次优化,根据优化结果对设计变量与目标函数进行更新;S2.驱动系统设计:将完成结构优化后更新得到的自变量与目标函数作为机械臂驱动系统的初始数据,在ADAMS中对驱动系统进行动态仿真与分析,完成驱动系统的设计,并根据设计结果进一步更新设计变量与目标函数;S3.优化结果判断:将步骤S2中得到的设计变量与目标函数与步骤S1中的初始值进行比较,判断结果是否满足要求,如果不满足,将步骤S2得到的设计变量与目标函数作为步骤S1中的初始值,继续步骤S1、S2和S3,直到满足要求。进一步地,所述的步骤S1具体包含:S11.在结构设计软件中建立初始机械臂的三维模型,初步确定机械臂的结构尺寸和驱动系统数据;S12.定义机械臂优化目标函数和设计变量;S13.将三维模型导入到有限元中,在有限元中对导入的机械臂模型进行约束设置,并根据实际情况对机械臂所能承受的最大负载进行设定;S14.在有限元中对收敛条件进行设置,然后基于二次拉格朗日算法进行非线性编程实现机械臂结构的首次优化;S15.根据首次优化后的机械臂的结构尺寸,对目标函数与设计变量中相关部分更新替换,得到新的设计变量与目标函数。跟进一步地,步骤S12中所述的目标函数包含结构和驱动系统互相独立的两部分。再进一步地,所述的步骤S2具体过程包含:S21.将结构优化后更新得到的设计变量与目标函数作为设计机械臂驱动系统的初始设计变量与目标函数,在动态模型中假定关节参数为常数,在ADAMS中对驱动系统进行动力学建模,动态分析;S22.从实际情况出发,利用机械臂在空间中预定的行驶轨迹与速度及机械臂能够搬运的最大负载进行动态模拟,获得完成这个过程驱动系统所需的力矩;S23.根据功率密度图中所表示的每个驱动系统所需力矩与质量的关系求取每个驱动系统的质量;S24.将得到的驱动系统的质量与驱动力矩对驱动系统中包含的电机进行重新选型、减速器重新设计,完成之后,将设计变量与目标函数中与驱动系统相关的部分进行更新。再进一步地,所述的步骤S3具体过程包含:将步骤S2中更新得到的目标函数与步骤S1中目标函数的初始值进行比较作差,看其偏差是否在允许范围内,如果符合要求则结束优化过程,不符合要求,则将步骤S2中得到的设计变量与目标函数作为步骤S1中的初始值,继续进行结构优化、驱动系统设计和优化结果判断这个过程,直到优化结果满足要求为止。本专利技术的优点在于:在优化过程中建立结构设计和驱动系统两个模块之间的联系,从全局把控机械臂的组成元素,寻求最优结果,实现机械臂的轻量化,其准确性高,优化效果好。附图说明图1为本专利技术的统一设计方法流程图。图2为本专利技术实施例的功率密度图。图3为本专利技术的轻量化机械臂的结构模型图。图中:第一驱动系统3、第二驱动系统4、第一连杆系统5、第三驱动系统6、第四驱动系统7、第一关节系统8、第二关节系统9、末端执行器10、第二连杆系统11具体实施方式下面结合附图和具体实施例对本专利技术作进一步的详细描述:本专利技术所设计的一种轻量化机械臂的统一设计方法,包括以下步骤:S1.结构优化:对机械臂尺寸进行初步定位,建立三维模型,将三维模型导入有限元中,定义优化目标函数、设计变量、约束条件的初始值,并基于二次拉格朗日算法完成结构的首次优化,根据优化结果对设计变量与目标函数进行更新;S2.驱动系统设计:将完成结构优化后更新得到的自变量与目标函数作为机械臂驱动系统的初始数据,在ADAMS中对驱动系统进行动态仿真与分析,完成驱动系统的设计,并根据设计结果进一步更新设计变量与目标函数;S3.优化结果判断:将步骤S2中得到的设计变量与目标函数与步骤S1中的初始值进行比较,判断结果是否满足要求,如果不满足,将步骤S2得到的设计变量与目标函数作为步骤S1中的初始值,继续步骤S1、S2和S3,直到满足要求。如图2所示,所述机械臂包括:电源装置和控制装置1、基座底板2、第一驱动系统3、第二驱动系统4、第一连杆系统5、第三驱动系统6、第四驱动系统7、第一关节系统8、第二关节系统9、末端执行器10、第二连杆系统11,轻型机械臂的整体转动由第一驱动系统3带动;第一连杆系统5的转动由第二驱动系统4带动;第二连杆系统11的转动由第三驱动系统6带动;第一关节系统8绕连杆轴线的旋转由第四驱动系统7带动;末端执行器10的旋转由第二关节系统9带动;末端执行器10手指的抓紧与放松由舵机带动;其中,上述机械臂中的结构模块包含基座总成2、第一连杆系统5、第二连杆系统11,以上结构模块选择比强度大的铝合金作为结构设计的材料以来满足轻型机械臂的要求;上述机械臂中的驱动模块包含第一驱动系统3、第二驱动系统4、第三驱动系统6、第四驱动系统7,为了达到更好的动态性能和更紧凑的结构,选择功率密度高的直流无刷电机与谐波齿轮传动减速器构成驱动系统;本设计实施例中,所述的结构设计软件为SolidWorks,有限元仿真软件为ANSYS。针对图2所示的机械臂的轻量化机械臂的统一设计方法具体包含以下具体步骤:S1.结构优化:对机械臂尺寸进行初步定位,建立三维模型,导入有限元中完成结构的首次优化,得到新的设计变量与目标函数。具体为:S11.根据实际需求,初步确定机械臂的结构尺寸与驱动系统数据,并在结构设计软件SolidWorks中建立初始机械臂三维模型;S12.将机械臂的基座底板1、第一连杆系统5、第二连杆系统11,与第一驱动系统3、第二驱动系统4、第三驱动系统6、第四驱动系统7中涉及的变量用一个矢量X=[ul,uJ]表示出来,其中ul是关于连杆结构部分的设计变量如基座底板1的长度与宽度,连杆5与连杆11的内径,以及在其上开孔的长度与宽度等。uJ是关于驱动系统的设计变量如各个驱动系统涉及的输出力矩及其相应的外壳尺寸。这些设计变量与结构强度和动态性能相关,故在设计过程中需要不断优化,同时通过分析计算定义机械臂优化目标函数minf(X)=f1(ul)+f2(uJ),该目标函数也本文档来自技高网...
一种轻量化机械臂的统一设计方法

【技术保护点】
一种轻量化机械臂的统一设计方法,其特征在于,包括以下步骤:S1.结构优化:对机械臂尺寸进行初步定位,建立三维模型,将三维模型导入有限元中,定义优化目标函数、设计变量、约束条件的初始值,并基于二次拉格朗日算法完成结构的首次优化,根据优化结果对设计变量与目标函数进行更新;S2.驱动系统设计:将完成结构优化后更新得到的自变量与目标函数作为机械臂驱动系统的初始数据,在ADAMS中对驱动系统进行动态仿真与分析,完成驱动系统的设计,并根据设计结果进一步更新设计变量与目标函数;S3.优化结果判断:将步骤S2中得到的设计变量与目标函数与步骤S1中的初始值进行比较,判断结果是否满足要求,如果不满足,将步骤S2得到的设计变量与目标函数作为步骤S1中的初始值,继续步骤S1、S2和S3,直到满足要求。

【技术特征摘要】
1.一种轻量化机械臂的统一设计方法,其特征在于,包括以下步骤:S1.结构优化:对机械臂尺寸进行初步定位,建立三维模型,将三维模型导入有限元中,定义优化目标函数、设计变量、约束条件的初始值,并基于二次拉格朗日算法完成结构的首次优化,根据优化结果对设计变量与目标函数进行更新;S2.驱动系统设计:将完成结构优化后更新得到的自变量与目标函数作为机械臂驱动系统的初始数据,在ADAMS中对驱动系统进行动态仿真与分析,完成驱动系统的设计,并根据设计结果进一步更新设计变量与目标函数;S3.优化结果判断:将步骤S2中得到的设计变量与目标函数与步骤S1中的初始值进行比较,判断结果是否满足要求,如果不满足,将步骤S2得到的设计变量与目标函数作为步骤S1中的初始值,继续步骤S1、S2和S3,直到满足要求。2.根据权利要求1所述的一种轻量化机械臂的统一设计方法,其特征在于,所述的步骤S1具体包含:S11.在结构设计软件中建立初始机械臂的三维模型,初步确定机械臂的结构尺寸和驱动系统数据;S12.定义机械臂优化目标函数和设计变量;S13.将三维模型导入到有限元中,在有限元中对导入的机械臂模型进行约束设置,并根据实际情况对机械臂所能承受的最大负载进行设定;S14.在有限元中对收敛条件进行设置,然后基于二次拉格朗日算法进行非线性编程实现机械臂结构的首次优化;S15.根据首次优化后的机械臂的结构尺寸,对目标函数与设计变量...

【专利技术属性】
技术研发人员:尹海斌李勇光杨峰黄善胜
申请(专利权)人:武汉理工大学
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1