当前位置: 首页 > 专利查询>昆士兰大学专利>正文

硅铝酸盐衍生物的形成方法技术

技术编号:1415673 阅读:205 留言:0更新日期:2012-04-11 18:40
一种用于制备无定型硅铝酸盐衍生物的方法,该方法包括将相应的起始固体材料与MOH反应,其中M为碱金属或铵阳离子。相应的起始固体材料可选自蒙脱土、高岭土、天然沸石(例如斜发沸石/片沸石)以及伊利石、坡缕石和皂石,并且附加的反应物MX(其中X为卤素)可以与MOH结合使用。本发明专利技术还包括通式为MpAlqSi↓[2]Or(OH)↓[s]Xt.uH↓[2]O的硅铝酸盐衍生物及通式为MpAlqSi↓[2]Or(OH)↓[s].uH↓[2]O的硅铝酸盐衍生物。(*该技术在2015年保护过期,可自由使用*)

【技术实现步骤摘要】
硅铝酸盐衍生物的形成方法专利
本专利技术涉及硅铝酸盐衍生物形态的新材料的形成以及通过粘土矿和其它含铝矿的化学改性而得到这些新材料的形成方法。这些粘土或含铝矿的衍生物的特征是其中四面体配位的Al+3占优势。该四面体配位Al+3来自母矿中的八面体配位Al+3的化学改性。这种原子规模结构的转变可得到比原粘土结构更多的可交换位置。
技术介绍
从这些粘土或含铝矿的改性而产生的新材料与原矿(例如粘土或沸石)的性质相比,其两个特点是从溶液交换离子的容量(即离子交换容量)增大和/或可用表面积的增加。这两个特点在离子交换(例如从水或非水溶液中除去有毒金属离子、从水或非水溶液中除去NH+3离子、作洗涤剂填料和水软化剂)、吸附(例如从环境中除去气体、从溶液中吸附阳离子)、作为控制目标阳离子向环境释放的试剂以及作为烃类和其他化学物质改性的催化反应中的基质等广大的应用领域中对于这些衍生材料的经济使用具有显著的重要意义。粘土矿物是被称之为页硅酸盐(phyllosilicafes)或“层状”硅酸盐的矿物大家族中的成员。这些粘土矿以四面体和八面体层的二维排列为典型特征,每层具有的特定的元素组成和结晶关系定义了矿物的类型。因此,四面体层可以具有T2O5的组成(此处四面体阳离子T为Si、Al和/或Fe);八面体通常可以含有例如Mg、Al和Fe等阳离子,但也可以含有其他阳离子例如Li、Ti、V、Cr、Mn、Co、Ni、Cu和Zn(参见布林德利和布朗所著《粘土矿物的晶体结构及其X-射线鉴别》,1980,矿物学会,伦敦)。每一粘土矿类型又可根据相应层排列中四面体的占有率而进一步分成三四面体型和双四面体型。某些特殊的矿物碎片可以表现出介于这两种类型之间的阳离子占有率。尽管如此,这些四面体和八面体层的相对排列也定义了基本矿物类,其中一个八面体层连接一个四面体层的集合体称为1∶1层型矿。一个八面体层连接两个四面体层的集合体称为2∶1层型矿。这一基于特定次级单元的结晶学关系的矿物基本分类-->是粘土矿物学领域的技术人员所熟知的并且是对本专利技术进行描述的基础。尽管这些次级单元的结晶学属于粘土矿的范围,本专利技术的硅铝酸盐衍生物也包括在一种扩展的三维网络中含有围绕硅或铝的氧原子的四面体骨架的矿物。例如,各种沸石含有连接的四面体环、双环或多面体环的不同结合,但是它们也适合于提供一种本专利技术的硅铝酸盐衍生物(此后称之为“ASD”)。在较早的文献(WO 95/00441)中描述了从1∶1硅铝酸盐的高岭土得到的称为“高岭土无定形衍生物”(KAD)的一种无定形衍生物的生产。其说明书中描述了通过高岭土与碱金属卤化物MX反应而从高岭土原矿生产KAD,其中M为碱金属而X为卤素。在该说明书中,MX是可将高岭族矿物中大部分八面体配位铝转化为四面体配位铝的合适试剂的唯一例子。然而没有提及这一现象发生的任何可能的机理。然而我们惊异地发现一种另外的试剂例如一种MOH型(其中M为碱金属阳离子)的强碱性溶液同样可将大部分八面体配位铝转化为四面体配位铝。不希望被理论束缚,假设能获得这种特殊效果的试剂可以含有一种可解离成阳离子基和阴离子基的化合物从而使存在的氢氧根离子的浓度大于氢离子的浓度。除了这一特点以外或者换句话说,该化合物在所得溶液中由于与硅铝酸盐矿物的相互作用而形成浓度大于氢离子的氢氧根离子。由于过量氢氧根离子的形成,看来该过量氢氧根离子可引起原来材料中阳离子-氧键合的重新构造从而可形成稳定的具有前面所述性能的无定形材料。再者,当不希望被理论束缚时,这种化学转化或转变可用下述实例来描述,在该实例中,在结构中带有八面体位置的Al和四面体位置的Si的高岭土与一种碱金属卤化物(其中阳离子为K+或铵离子)在一种水溶液中反应以使过量卤素(例如X-)能轻易地被高岭土结构中的可供氢氧基(OH-)所交换。这种交换导致具有过量OH-离子的高碱性溶液的形成并可通过这些OH-离子在氢键合氧原子上的作用而引起八面体配位铝的重排。这种铝配位的重排将导致在所得稳定材料中主要为四配位铝。这便为为什么MX可作为WO 95/00441中的一种合适试剂提供了一种合理的解释。另外,使用一种试剂例如一种可解离成阳离子和阴离子基的化合物也可产生一-->种高碱性的溶液。过量存在的阴离子也可通过其与氢键合氧原子的作用而引起八面体配位铝的重排。粘土的这种类型的化学转化的其他例子包括高岭土或蒙脱土与一种苛性试剂(例如MOH,其中M为一种阳离例如K+、或Na+或Li+)反应从而通过其在氢键合氧原子上的作用而使八面体配位铝重排为四面体配位铝。专利技术简述因此本专利技术的目的是提供一种制备硅铝酸盐衍生物的方法,该方法包括将相应原料固体与MOH(其中M为碱金属)反应而提供一种无定形硅铝酸盐衍生物(ASD)。除了MX以外还可以用MOH来生产ASD这一认识是有意义的,因为现在已经知道可以用MOH从任何相应的原料来生产ASD。这是令人惊奇的,因为现在可以,例如,从包括蒙脱土和其他近晶族成员在内的2∶1粘土来制造一种无定形衍生物。至今为止从这些2∶1粘土来生产无定形衍生物是令人惊奇的,因为这些矿物的结构和化学性质不同于1∶1的高岭土族矿物。在高岭土族中粘土的单元层由一个八面体层和一个四面体层组成,使得每一层都暴露于层间空间(一种可接近反应物的区域)。但是2∶1型粘土矿含有一个八面体层和两个四面体层。含有八面体配位铝的八面体层夹在四面体层之间。使用金属卤化物的相似反应物对这种八面体层进行转化是不容易预测的,因为层间空间被四面体层所围绕。另外值得指出的是在2∶1型粘土矿中的八面体层不容易与金属卤化物接近。由于这个原因,本领域的技术人员可以推测2∶1粘土矿的反应物将产生与WO 95/00441中描述的反应产物不同的产物。这些带有所希望性能的硅铝酸盐衍生物的反应速率和优选形式将取决于在给定时间的精确反应温度。一般来说在一分钟至100小时的时间范围内可以使用的反应温度为小于200℃。更优选的是反应温度为50-200℃而反应时间为小于24小时。与铝原子配位的重排相一致的是,一种另外的阳离子(来自该试剂)将通过其“附着”在由这种重排而形成的交换位置上而使不规则的结构稳定化。在整个化学转化过程中,将有铝(及少量的硅)从硅铝酸盐结构中损失而进入该高碱性溶液中。尽管pH>7.0的溶液便可发生反应形成优选的ASD,但在反应过程中及接近反应结束时该高碱性溶液优选的pH一般为>12。可通过本专利技术的方法进行改性的硅铝酸盐的例子包括蒙脱土、高岭土、天然沸石(例如斜发沸石/片沸石)以及伊利石、坡缕石和皂石。本专利技术的ASD其特征为四面体配位Al+3占优势,该四面体配位Al+3是从母矿(例如粘土)中的起始八面体配位状态转化而来。在例如蒙脱土的情况下,该四面体配位Al+3是从母矿(例如粘土)中的八面体配位Al+3转化而来。可通过常规的矿物表征技-->术对这种ASD(此后以M-ASD表示,M为该特定形成方法所获得的交换阳离子)做进一步的阐述,这些技术可阐明下列性能:(1)“无定形”性能(对X射线衍射),即没有任何明显的重复单元的长程有序;(2)从溶液中交换阳离子能力的增强(与起始原矿相比);(3)用常规BET等温法测定的材料可供表面积的增加(与起始原矿相比);(4)从溶液中吸本文档来自技高网...

【技术保护点】
一种用于制备无定形硅铝酸盐衍生物的方法,该方法包括将相应的起始固体材料与MOH反应,其中M为碱金属或铵阳离子。

【技术特征摘要】
AU 1994-12-16 PN01211、一种用于制备无定形硅铝酸盐衍生物的方法,该方法包括将相应的起始固体材料与MOH反应,其中M为碱金属或铵阳离子。2、一种如权利要求1中所要求的方法,该方法包括使用一种附加的反应物MX,其中X为卤素。3、一种如权利要求1中所要求的方法,其中起始材料包括蒙土,高岭土,天然沸石(例如斜发沸石/片沸石)以及伊利石、坡缕石和皂石。4、一种如权利要求1中所要求的方法,其中采用200℃或更低的反应温度。5、一种如权利要求4中所要求的方法,其中采用50-200℃之间的反应温度。6、一种如权利要求1中所要求的方法,其中采用1分钟到100小时的反应时间。7、一种如权利要求6中所要求的方法,其中采用低于24小时的反应时间。8、一种如权利要求1中所要求的用于制备一种硅铝酸盐衍生物的方法,该硅铝酸盐衍生物具有通式为MpAlqSi2Or(OH)sXt·uH2O的化学组成,其中0.2≤p≤2.0,0.5≤q≤2.5,4.0≤r≤12,0.5≤s≤4.0,0.0≤t≤1.0,0.0≤u≤6.0,其中M为铵离子或碱金属阳离子且X为卤素,其中M如NH4+、Na+、K+、Li+、R...

【专利技术属性】
技术研发人员:巴比尔辛格伊恩唐纳德理查德麦金农大卫佩奇
申请(专利权)人:昆士兰大学
类型:发明
国别省市:AU[澳大利亚]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1