无模板制备大比表面积纳米银颗粒膜复合材料的方法技术

技术编号:11832563 阅读:112 留言:0更新日期:2015-08-05 18:31
无模板制备大比表面积纳米银颗粒膜复合材料的方法,首先在玻璃基体表面制备银-锆合金膜,并使基体保持一定温度以使银原子在合金膜表面生长为银颗粒即制得产品。本发明专利技术采用磁控溅射双靶共沉积制备银合金薄膜及基体原位加热技术,实现了无需模板制备出大比表面积纳米银薄膜/银颗粒复合结构材料,该复合结构材料中的银薄膜厚度、银颗粒尺度在微纳尺度范围内均可以调控,无需采用模板,成本低,绿色环保,易于在玻璃基体上无需模板制备出大面积、高性能纳米银颗粒膜复合材料,较之纯银薄膜比表面积可增大20%以上。

【技术实现步骤摘要】
无模板制备大比表面积纳米银颗粒膜复合材料的方法
本专利技术涉及到微、纳米尺度材料的制备领域,具体的说是一种无模板制备大比表面积纳米银颗粒膜复合材料的方法。
技术介绍
随着微纳米科学技术的发展,微米及纳米尺度薄膜、颗粒的优异性能和广阔应用前景逐渐被研究者认知并引起世界各国材料学家、物理学家和化学家的极大兴趣。当尺寸达到纳米级时,颗粒将呈现明显的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,在催化、滤光、光吸收、医学、磁介质及新材料等领域具有广阔应用前景。由于良好的综合性能及成本优势,纯银(Ag)及其合金材料日益受到人们的重视,作为重要的工业原料已经广泛应用于微电子器件、互连导线、导电胶、导电涂料、润滑和电极材料等工业领域。Ag的氧化物主要有氧化银和氧化亚银,它们作为典型的半导体材料,在催化、气敏、太阳能电池等方面也有广泛应用。近年来根据性能需要设计新的纳米材料体系,特别是纳米复合体系的设计和研究,己成为当前纳米科学技术和凝聚态物理研究的前沿和热点。因此,纳米复合体系越来越受到人们的关注,其中纳米复合颗粒膜就是一类具有广阔应用前景的纳米复合材料,由于纳米粒子的性能、工艺条件等参量的变化都对纳米复合薄膜的性能有着显著的影响,因此,可以在较多的条件下实现对其功能特性的调控。纳米颗粒的实际应用常与薄膜材料进行组装以形成特定结构的纳米颗粒薄膜,表现出单个颗粒粒子所不具备的一些性质。银薄膜具有良好的催化性能,如果将纳米银薄膜与银颗粒组合到一起将会展现出更好的催化特性。将两种或两种以上的材料进行表面包覆处理后,可以产生新的功能,例如对超细颗粒表面经过改性,即利用物理或化学的方法改变颗粒表面的结构和组成将极大的拓展超细颗粒的应用空间,在微电子、传感、催化、光电显示、生物医药等领域有广阔的应用前景。由于具有广阔的应用前景,高效率、低成本的微纳米尺度Ag薄膜、银颗粒及其复合材料制备技术成为本领域的研究热点之一。目前银薄膜的制备方法主要有磁控溅射法、蒸镀法、电镀、化学镀、溶胶凝胶、电沉积等方法。目前亚微及纳米尺度Ag颗粒的制备方法主要包括:水热法、还原银盐法、晶种法、紫外光照射、电化学合成、气相沉积、软硬模板法、反相胶束法。基于当前的研究现状可以看出,虽然人们在实验室内可以通过多种方法制备出亚微、纳米尺度的银薄膜和银颗粒,但是所制备的银颗粒基本都是自由态的单分散颗粒或者许多颗粒团聚在一起,很难将这些颗粒固定在基体或者薄膜表面。尽管通过模板法可以在基体或者薄膜表面生长纯银颗粒,但是这种方法技术复杂,而且在去除模板的过程中容易对Ag颗粒造成污染,因而也不适合产业化发展需求。综上所述,可以看出现有技术方法很难在薄膜表面生长与薄膜结合良好的Ag颗粒,也就是说很难制备出银薄膜/银颗粒复合结构材料。
技术实现思路
本专利技术的目的是提供一种无模板制备大比表面积纳米银颗粒膜复合材料的方法,该方法是在玻璃基体表面无需模板制备出大比表面积银颗粒膜复合材料。本专利技术为实现上述技术目的采用的技术方案为:无模板制备大比表面积纳米银颗粒膜复合材料的方法,首先在玻璃基体表面制备银-锆合金膜,并使基体保持一定温度促使银原子生长为银颗粒即制得产品。所述在玻璃基体表面制备银-锆合金膜的步骤如下:1)将玻璃基体(医用载玻片)清洗干净后置于磁控溅射镀膜机基片台上;2)在镀膜机的靶位上分别放置好Ag靶和Zr靶,然后关闭真空室、开启机械泵和分子泵对真空室抽真空,使真空度达到0.0001-0.0005Pa,而后再对基片台进行加热,加热温度200℃~330℃;3)向真空室通入高纯氩气使真空室内的气压为0.2-0.8Pa,然后同时接通Ag靶和Zr靶的电源在玻璃基体上共溅射沉积Ag-Zr合金薄膜;4)Ag-Zr合金薄膜沉积完成后,继续保温30-100min,以使Ag-Zr合金薄膜中的Ag原子在薄膜表面析出、形核、生长成为不同尺度的Ag颗粒。所述Ag-Zr合金薄膜中Ag的含量为2-30at%,厚度为5-100nm。本专利技术的技术方案如下:首先将玻璃基体固定到磁控溅射镀膜机基片台上,然后对基片台进行加热(加热温度200℃~330℃),接下来通过磁控溅射双靶共沉积技术在玻璃(PI)基体上沉积不同成分、不同厚度的纳米Ag-Zr合金膜,保温一定时间(30-100分钟),就可以在玻璃基体表面制备出银薄膜/银颗粒复合结构材料;具体操作如下:(1)、玻璃基体清洗将玻璃基体置入装有无水乙醇的烧杯中,将该烧杯放入超声波清洗机中超声清洗10-30分钟,然后再将清洗后的玻璃放入装有去离子水的烧杯中超声清洗5-15分钟,将清洗好的玻璃基体用氮气吹干,然后将玻璃基体固定到磁控溅射镀膜机基片台上;(2)、靶材准备及镀膜机基片台加热镀膜采用JCP-350直流磁控溅射镀膜机,在镀膜机的靶位上分别放置好纯度99.99at%的Ag靶和纯度99.99at%的Zr靶。将靶材和玻璃基体放置好以后将镀膜机的真空室关闭,并开启机械泵、分子泵对真空室抽真空,使真空度达到0.0001-0.0005Pa,然后对基片台进行加热,加热温度200℃~330℃,加热到达所需温度后开始镀膜;(3)、制备出银薄膜/银颗粒复合结构当基片台加热到预定温度稳定后开始镀膜。镀膜采用的是三靶位JCP-350磁控溅射镀膜机。镀膜所用靶材为纯度99.99at%的Ag靶和纯度99.99at%的Zr靶。当真空室真空度达到0.0001-0.0005Pa后,向真空室通入高纯氩气使真空室内的气压达到0.2-0.8Pa之间。然后同时接通Ag靶和Zr靶的电源开始共溅射在玻璃基体上沉积Ag-Zr合金薄膜,合金薄膜中Zr的含量通过控制Zr靶的溅射功率调控。Ag靶和Zr的溅射功率依据所需要的生长速率及薄膜成分调整。通过调整工艺参数,可制备Ag-5~30at.%Zr合金膜,薄膜厚度在5-100nm之间。薄膜沉积完毕后基片台继续保温30-100分钟。由于薄膜在沉积过程中基片台一直保持一定温度,相当于对薄膜进行了原位退火,促使合金膜中的Ag原子在表面析出、形核、生长成为不同尺度的Ag颗粒。从而通过一步法制备出了银薄膜/银颗粒复合结构材料;有益效果:本专利技术采用磁控溅射双靶共沉积制备银合金薄膜及基体原位加热技术,实现了无需模板制备出高性能、大比表面积纳米银薄膜/银颗粒复合结构材料。这种方法制备的复合结构材料中的银薄膜厚度、银颗粒尺度在微纳尺度范围内均可以调控。合金膜中的Zr元素能够抑制Ag原子向玻璃基体扩散,玻璃基体能够抑制薄膜残余应力释放,促使Ag原子向表面扩散形成Ag颗粒成为应力释放的途径。本专利技术方法简单,操作方便,无需采用模板,成本低,绿色环保,易于在基体上无需模板制备出大面积、高性能纳米银颗粒膜复合材料,较之纯银膜比表面积可增大20%以上。采用磁控溅射共沉积技术制备的高性能银颗粒膜复合结构材料可应用于电子器件、催化、传感器、光电显示器件等领域。具体实施方式下面结合具体实施例对本专利技术作进一步的阐述。实施例1无模板制备大比表面积纳米银颗粒膜复合材料的方法,包括以下步骤:(1)、玻璃基体清洗将玻璃基体置入装有无水乙醇的烧杯中,将该烧杯放入超声波清洗机中超声清洗10分钟,然后再将清洗后的玻璃放入装有去离子水的烧杯中超声清洗5分钟,将清洗好的玻璃基体用氮气吹干,然后将玻璃基体固本文档来自技高网
...

【技术保护点】
无模板制备大比表面积纳米银颗粒膜复合材料的方法,其特征在于:首先在玻璃基体表面制备银‑锆合金膜,并保持该温度以使银原子生长为银颗粒即制得产品。

【技术特征摘要】
1.无模板制备大比表面积纳米银颗粒膜复合材料的方法,其特征在于:首先在玻璃基体表面制备银-锆合金膜,并保持该温度以使银原子生长为银颗粒即制得产品;所述在玻璃基体表面制备银-锆合金膜的步骤如下:1)将玻璃基体清洗干净后置于磁控溅射镀膜机基片台上;2)在镀膜机的靶位上分别放置好Ag靶和Zr靶,然后关闭真空室、开启机械泵和分子泵对真空室抽真空,使真空度达到0.0001-0.0005Pa,而后再对基片台进行加热,加热温度200℃~330℃;3)向...

【专利技术属性】
技术研发人员:孙浩亮何孟杰宋忠孝逯峙李新利刘玉亮
申请(专利权)人:河南科技大学
类型:发明
国别省市:河南;41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1