电解精炼-液态阴极原位定向凝固制备高纯单晶硅的方法技术

技术编号:9030731 阅读:140 留言:0更新日期:2013-08-14 22:28
本发明专利技术涉及电解精炼-液态阴极原位定向凝固制备高纯单晶硅的方法。本发明专利技术以熔融含硅合金作为电解槽的阳极,氟化物电解质置于中间层,熔融高纯硅置于最上层作为阴极,电解槽自下而上构成“熔融硅合金--熔融电解质--熔融高纯硅”三层液态电解池,随后采用恒电流电解精炼,在电解精炼过程中将阴极液态高纯硅原位提拉定向凝固进一步纯化,并直接将其制备为高纯单晶硅。多晶硅以液态形式沉出,解决了熔盐电解法制备太阳能级多晶硅的过程中,硅以固态形式沉积出来时,产物易枝晶化,导电性差,阴极固-液界面不稳定,沉积速度慢,且电流效率较低的问题;缩短了单晶硅的制备流程,又可以降低太阳能多晶硅及单晶硅电池的制造成本。

【技术实现步骤摘要】

本专利技术涉及电化学精炼结合液态阴极原位定向凝固直接制备高纯单晶硅的方法,特别涉及。
技术介绍
近年来,能源问题日益成为制约国际社会经济发展的瓶颈,越来越多的国家开始开发太阳能资源,光伏产业也已成为全球增长最快的行业。太阳能电池作为光伏产业的主要应用,在应对全球能源危机及环境污染的挑战之中扮演着重要角色。迄今为止,约90%的太阳能电池由高纯晶体硅材料制备而成,其中包括单晶硅和多晶硅。其供应主要来源于半导体工业形成的边角料硅材料。然而随着光伏产业的快速发展,来自半导体行业的边角废料已经不能满足光伏产业生产发展的需要,同时太阳能级硅材料价格的居高不下(尤其是单晶硅)极大地提高了太阳能电池成本(硅原料占其总成本的一半以上),成为太阳能电池推广应用与光伏产业发展的主要障碍。因此,积极寻求满足太阳能电池经济技术指标要求的硅材料的生产工艺成为全球光伏电池面临的紧迫任务。硅系列太阳光伏电池中,单晶硅太阳光伏电池转换效率最高,技术也最为成熟,但由于受单晶硅材料价格及繁琐的电池工艺影响,致使单晶硅成本居高不下,大幅度降低其成本成为工业生产面临的主要问题。为了节省高质量材料,寻找单晶硅电池的替代品,太阳能电池材料的重心开始由单晶向多晶硅和薄膜方向发展。当前,一般以冶金级硅为原料,通过精炼提纯获得太阳能级以上高纯多晶硅材料,改良西门子法和硅烷法是目前主流的提纯方法,但两种方法均存在着能耗高、污染重的缺点,且硅烷法还存在安全方面的威胁。为此,国内外都在积极探索新的冶炼方法来生产太阳能级硅,其中代表性 的新方法有定向凝固提纯法、真空感应熔炼法等,然而这些方法普遍存在着杂质B或P去除效果不理想的问题。熔盐电解方法的提出解决了上述的杂质去除问题,该方法较物理冶金方法提纯硅的最大优点就是可以有效去除B、P杂质。通过熔盐电解精炼法制备太阳能级硅已有相关报道,包括硅氧化物阴极电解脱氧、以冶金硅或硅合金作阳极在熔盐中电沉积等方法。前者对于原料的纯度有着较高的要求,并且释放出大量的温室效应气体,后者以固体形态在阴极沉积,获得的硅多呈枝晶或海绵状,与电解质分离困难。中国专利200710034619.4报道了一种“熔盐电解一三层液精炼一真空蒸馏”工艺制取太阳级多晶硅材料的方法。其主要创新点是将冶金硅和Ml配制成Ml-Si合金,将其作为电解精炼的阳极,高纯金属M2为电解精炼的阴极,含硅氟化物的熔体作电解精炼的电解质。但是因为该工艺采用了熔点较低的其它金属作为阴极,阴极沉积硅最终仍然以合金形式获得,必须通过随后的真空蒸馏方式分离,工艺路线较长。
技术实现思路
为了解决上述问题,本专利技术的目的是提供一种成本低、工艺简单的。本专利技术的技术方案是:,具体包括以下步骤: 步骤1.阳极含硅合金的熔配:采用密度大于硅,且比硅电负性大的金属与冶金级硅或者工业多晶硅线切割废料按1:3-3:1比例混合,熔融后作为阳极,备用; 步骤2.电解质的熔配:电解质体系采用氟化物与含有硅化合物的混合物,熔融后作为电解质体系,备用;其中,含有硅化合物含量为lwt%-20wt%,所述氟化物为NaF,KF, MgF2,CaF2, BaF2, SrF2 中的至少一种;所述含硅化合物为 SiO2, Li2SiF6, Na2SiF6, K2SiF6,ZnSiF6, CaSiF6, BaSiF6, SrSiF6, Li2SiO3, Na2SiO3, K2SiO3, CaSiO3, MgSiO3, BaSiO3 中的至少一种; 步骤3.阴极初始原料为纯度6N以上液态高纯硅; 步骤4.将步骤(I)中的熔融硅合金置于电解槽底部作为阳极,步骤(2)中的熔融电解质置于中间层,电解质的厚度为3 30cm,步骤(3)中熔融高纯硅置于最上层作为阴极,电解槽自下而上为“熔融硅合金一熔融电解质一熔融高纯硅”三层液态电解池,电解槽整体处于密封惰性气氛,在温度为1450°C -1650°C下,进行恒电流电解精炼,电流密度为5mA/cm2-2000mA/cm2,电解过程中阳极区可直接加料,保证电解连续进行; 步骤5.在阴极集流体上安装籽晶,进行定向凝固拉升,拉升过程中缓慢旋转,最终生长出圆柱形的单晶硅。进一步,所述步骤4中电解质的厚度为5-10cm。本专利技术的有益效果是: (1)多晶硅以液态形式沉出,解决了熔盐电解法制备太阳能级多晶硅的过程中,硅以固态形式沉积出来时,产物易枝晶化,导电性差,阴极固-液界面不稳定,沉积速度慢,且电流效率较低的问题; (2)缩短了单晶硅的制备流程,有望解决现如今单晶硅成本居高不下的问题; (3)工业上多晶硅线切割废料的利用,既可以提高资源利用率,减少环境危害,又可以降低太阳能多晶硅及单晶硅电池的制造成本。附图说明图1为本专利技术中所采用的电解-原位定向凝固系统示意图。图中: 1.阳极导线,2.阴极导线,3.石墨板,4.钢壳,5.耐火材料,6.高纯硅结壳,7.加料口,8.含硅合金阳极,9.电解质,10.液态高纯硅阴极,11.籽晶杆,12.籽晶,13单晶。具体实施例方式下面结合具体实施例对本专利技术的技术方案做进一步说明。实施例1 步骤1.阳极含硅合金的熔配:采用密度大于硅,且比硅电负性大的金属Cu与冶金级硅按1:3比例混合,熔融后作为阳极,备用 ; 步骤2.电解质的熔配:电解质体系采用BaF2与SiO2的混合物,熔融后作为电解质体系,备用;其中,SiO2含量为lwt%;步骤3.阴极初始原料为纯度6N以上液态高纯硅; 步骤4.将步骤(I)中的熔融硅合金置于电解槽底部作为阳极,步骤(2)中的熔融电解质置于中间层,电解质的厚度为10cm,步骤(3)中熔融高纯硅置于最上层作为阴极,电解槽自下而上为“熔融硅合金一熔融电解质一熔融高纯硅”三层液态电解池,电解槽整体处于密封惰性气氛,在温度为1450°C下,进行恒电流电解精炼,电流密度为5mA/cm2,电解过程中阳极区可直接加料,保证电解连续进行; 步骤5.在阴极集流体上安装籽晶,进行定向凝固拉升,拉升过程中缓慢旋转,最终生长出圆柱形的单晶硅。实施例2 步骤1.阳极含硅合金的熔配:采用密度大于硅,且比硅电负性大的金属Cu与冶金级硅按3:1比例混合,熔融后作为阳极,备用; 步骤2.电解质的熔配: 电解质体系采用MgF2与Na2SiO3的混合物,熔融后作为电解质体系,备用;其中,Na2SiO3含量为10wt%, 步骤3.阴极初始原料为纯度6N以上液态高纯硅; 步骤4.将步骤(I)中的熔融硅合金置于电解槽底部作为阳极,步骤(2)中的熔融电解质置于中间层,电解质的厚度为5cm,步骤(3)中熔融高纯硅置于最上层作为阴极,电解槽自下而上为“熔融硅合金一熔融电解质一熔融高纯硅”三层液态电解池,电解槽整体处于密封惰性气氛,在温度为1550°C下,进行恒电流电解精炼,电流密度为lOOmA/cm2,电解过程中阳极区可直接加料,保证电解连续进行; 步骤5.在阴极集流体上安装籽晶,进行定向凝固拉升,拉升过程中缓慢旋转,最终生长出圆柱形的单晶硅。实施例3 步骤1.阳极含硅合金的熔配:采用密度大于硅,且比硅电负性大的金属Cu与工业多晶硅线切割废料按2:2比例混合,熔融后作为阳极,备用; 步骤2.电解质的熔配:电解质体系采用SrF2与BaSiF6的混本文档来自技高网
...

【技术保护点】
电解精炼?液态阴极原位定向凝固制备高纯单晶硅的方法,其特征在于,具体包括以下步骤:步骤1.阳极含硅合金的熔配:采用密度大于硅,且比硅电负性大的金属与冶金级硅或者工业多晶硅线切割废料按1:3?3:1比例混合,熔融后作为阳极,备用;步骤2.电解质的熔配:电解质体系采用氟化物与含有硅化合物的混合物,熔融后作为电解质体系,备用;其中,含有硅化合物含量为1wt%?20wt%,所述氟化物为NaF,?KF,?MgF2,?CaF2,?BaF2,?SrF2中的至少一种;所述含硅化合物为SiO2,?Li2SiF6,?Na2SiF6,?K2SiF6,?ZnSiF6,?CaSiF6,?BaSiF6,?SrSiF6,?Li2SiO3,?Na2SiO3,?K2SiO3,?CaSiO3,?MgSiO3,?BaSiO3中的至少一种;步骤3.阴极初始原料为纯度6N以上液态高纯硅;步骤4.将步骤(1)中的熔融硅合金置于电解槽底部作为阳极,步骤(2)中的熔融电解质置于中间层,电解质的厚度为3~30cm,步骤(3)中熔融高纯硅置于最上层作为阴极,电解槽自下而上为“熔融硅合金??熔融电解质??熔融高纯硅”三层液态电解池,电解槽整体处于密封惰性气氛,在温度为1450℃?1650℃下,进行恒电流电解精炼,电流密度为5mA/cm2?2000mA/cm2,电解过程中阳极区可直接加料,保证电解连续进行;步骤5.在阴极集流体上安装籽晶,进行定向凝固拉升,拉升过程中缓慢旋转,最终生长出圆柱形的单晶硅。...

【技术特征摘要】

【专利技术属性】
技术研发人员:焦树强胡月皎朱鸿民
申请(专利权)人:北京科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1